Limits...
Atom devices based on single dopants in silicon nanostructures.

Moraru D, Udhiarto A, Anwar M, Nowak R, Jablonski R, Hamid E, Tarido JC, Mizuno T, Tabe M - Nanoscale Res Lett (2011)

Bottom Line: Such technological trend brought us to a research stage on devices working with one or a few dopant atoms.In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism.These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

View Article: PubMed Central - HTML - PubMed

Affiliation: Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Nakaku, Hamamatsu, 432-8011, Japan. romtabe@rie.shizuoka.ac.jp.

ABSTRACT
Silicon field-effect transistors have now reached gate lengths of only a few tens of nanometers, containing a countable number of dopants in the channel. Such technological trend brought us to a research stage on devices working with one or a few dopant atoms. In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism. Furthermore, observation of individual dopant potential in the channel by Kelvin probe force microscopy is also presented. These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

No MeSH data available.


Related in: MedlinePlus

Single dopants in dopant-rich environment. (a) Device structure of a phosphorus-doped SOI-FET with the channel containing several donors. (b) SEM image of the channel area with an illustration of random donor arrangement. (c) An example of device characteristics with a single isolated first peak, indicating single-electron tunneling via a donor QD even in a donor-rich channel. (d) Zoom in on the first peak (inset: single-electron tunneling via a donor in a donor-rich channel).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211992&req=5

Figure 2: Single dopants in dopant-rich environment. (a) Device structure of a phosphorus-doped SOI-FET with the channel containing several donors. (b) SEM image of the channel area with an illustration of random donor arrangement. (c) An example of device characteristics with a single isolated first peak, indicating single-electron tunneling via a donor QD even in a donor-rich channel. (d) Zoom in on the first peak (inset: single-electron tunneling via a donor in a donor-rich channel).

Mentions: Devices with higher doping concentration are attractive because the presence of dopants in the channel can be confirmed. The problem is understanding if, in such dopant-rich environments (channels that contain more than just one isolated dopant), signatures of transport via individual dopant atoms can still be observed. For that purpose, we investigated devices having a structure as shown in Figure 2a: SOI-FETs with the channel patterned by an electron beam lithography technique to have a width of about 50 nm and a length between 20 and 150 nm [see Figure 2b]. Top Si layer has a final thickness of only 10 nm and is doped uniformly with phosphorus to a concentration ND ≅ 1 × 1018 cm-3 (as estimated from secondary ion mass spectrometry of reference samples). A simple estimation would give a number of 10 to approximately 75 dopant atoms in the device channel, depending on the channel dimensions.


Atom devices based on single dopants in silicon nanostructures.

Moraru D, Udhiarto A, Anwar M, Nowak R, Jablonski R, Hamid E, Tarido JC, Mizuno T, Tabe M - Nanoscale Res Lett (2011)

Single dopants in dopant-rich environment. (a) Device structure of a phosphorus-doped SOI-FET with the channel containing several donors. (b) SEM image of the channel area with an illustration of random donor arrangement. (c) An example of device characteristics with a single isolated first peak, indicating single-electron tunneling via a donor QD even in a donor-rich channel. (d) Zoom in on the first peak (inset: single-electron tunneling via a donor in a donor-rich channel).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211992&req=5

Figure 2: Single dopants in dopant-rich environment. (a) Device structure of a phosphorus-doped SOI-FET with the channel containing several donors. (b) SEM image of the channel area with an illustration of random donor arrangement. (c) An example of device characteristics with a single isolated first peak, indicating single-electron tunneling via a donor QD even in a donor-rich channel. (d) Zoom in on the first peak (inset: single-electron tunneling via a donor in a donor-rich channel).
Mentions: Devices with higher doping concentration are attractive because the presence of dopants in the channel can be confirmed. The problem is understanding if, in such dopant-rich environments (channels that contain more than just one isolated dopant), signatures of transport via individual dopant atoms can still be observed. For that purpose, we investigated devices having a structure as shown in Figure 2a: SOI-FETs with the channel patterned by an electron beam lithography technique to have a width of about 50 nm and a length between 20 and 150 nm [see Figure 2b]. Top Si layer has a final thickness of only 10 nm and is doped uniformly with phosphorus to a concentration ND ≅ 1 × 1018 cm-3 (as estimated from secondary ion mass spectrometry of reference samples). A simple estimation would give a number of 10 to approximately 75 dopant atoms in the device channel, depending on the channel dimensions.

Bottom Line: Such technological trend brought us to a research stage on devices working with one or a few dopant atoms.In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism.These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

View Article: PubMed Central - HTML - PubMed

Affiliation: Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Nakaku, Hamamatsu, 432-8011, Japan. romtabe@rie.shizuoka.ac.jp.

ABSTRACT
Silicon field-effect transistors have now reached gate lengths of only a few tens of nanometers, containing a countable number of dopants in the channel. Such technological trend brought us to a research stage on devices working with one or a few dopant atoms. In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism. Furthermore, observation of individual dopant potential in the channel by Kelvin probe force microscopy is also presented. These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

No MeSH data available.


Related in: MedlinePlus