Limits...
Room-temperature nonequilibrium growth of controllable ZnO nanorod arrays.

Li Q, Cheng K, Weng W, Song C, Du P, Shen G, Han G - Nanoscale Res Lett (2011)

Bottom Line: In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C).It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length.Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science & Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China. wengwj@zju.edu.cn.

ABSTRACT
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

No MeSH data available.


Related in: MedlinePlus

XRD patterns of ZnO nanorod arrays with different volumes of the growth media: (a) 2 mL (sample A); (b) 10 mL (sample B); (c) 20 mL (sample C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211990&req=5

Figure 4: XRD patterns of ZnO nanorod arrays with different volumes of the growth media: (a) 2 mL (sample A); (b) 10 mL (sample B); (c) 20 mL (sample C).

Mentions: The crystallinity of ZnO nanorod arrays grown on Si substrate with different density and length were studied by X-ray diffraction (XRD), as shown in Figure 4. The diffraction peaks in the typical XRD patterns confirm that the ZnO crystals are hexagonal wurtzite structure (p63mc). A sharp (002) diffraction peak indicates that most of the 1D ZnO nanorods grow preferentially along the [0001] direction (c-axis) and perpendicularly to the substrate. In addition, it can be seen that, with the evident enhancement of the peak intensity, the crystalline is abruptly improved, especially indicated by the sharp (002) diffraction peak.


Room-temperature nonequilibrium growth of controllable ZnO nanorod arrays.

Li Q, Cheng K, Weng W, Song C, Du P, Shen G, Han G - Nanoscale Res Lett (2011)

XRD patterns of ZnO nanorod arrays with different volumes of the growth media: (a) 2 mL (sample A); (b) 10 mL (sample B); (c) 20 mL (sample C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211990&req=5

Figure 4: XRD patterns of ZnO nanorod arrays with different volumes of the growth media: (a) 2 mL (sample A); (b) 10 mL (sample B); (c) 20 mL (sample C).
Mentions: The crystallinity of ZnO nanorod arrays grown on Si substrate with different density and length were studied by X-ray diffraction (XRD), as shown in Figure 4. The diffraction peaks in the typical XRD patterns confirm that the ZnO crystals are hexagonal wurtzite structure (p63mc). A sharp (002) diffraction peak indicates that most of the 1D ZnO nanorods grow preferentially along the [0001] direction (c-axis) and perpendicularly to the substrate. In addition, it can be seen that, with the evident enhancement of the peak intensity, the crystalline is abruptly improved, especially indicated by the sharp (002) diffraction peak.

Bottom Line: In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C).It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length.Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science & Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China. wengwj@zju.edu.cn.

ABSTRACT
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

No MeSH data available.


Related in: MedlinePlus