Limits...
Room-temperature nonequilibrium growth of controllable ZnO nanorod arrays.

Li Q, Cheng K, Weng W, Song C, Du P, Shen G, Han G - Nanoscale Res Lett (2011)

Bottom Line: In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C).It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length.Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science & Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China. wengwj@zju.edu.cn.

ABSTRACT
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

No MeSH data available.


Related in: MedlinePlus

SEM images of ZnO nanorod arrays with varying the volume of growth media: (a1) 2 mL (sample A); (b1) 10 mL (sample B); (c1) 20 mL (sample C); cross-sectional SEM images of (a2) sample A; (b2) sample B; (c2) sample C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211990&req=5

Figure 3: SEM images of ZnO nanorod arrays with varying the volume of growth media: (a1) 2 mL (sample A); (b1) 10 mL (sample B); (c1) 20 mL (sample C); cross-sectional SEM images of (a2) sample A; (b2) sample B; (c2) sample C.

Mentions: With the same ZnO seed-layer and equivalent concentration, the different volume of growth solution strongly influenced the density and length of the ZnO nanorods, as shown in Figure 3. When the ZnO seed-layer was dipped in the 2-mL growth medium and soaked for 2 h at room temperature (approx. 25°C), a relatively sparse, low dimension, and poorly alignment ZnO nanorods were synthesized, with an average length of 170 nm (Figure 3a). In the case of 10-mL growth medium, the higher density of ZnO nanorods compared with sample A is observed in Figure 3b1, with an average length of 365 nm. When the volume of growth solution increased to 20 mL, ZnO nanorods synthesized on substrate were densely packed and well aligned (Figure 3c1). The SEM cross-sectional image (Figure 3c2) shows the ZnO nanorods are 1100 nm in length. These results mean although the initial Zn2+ ions concentrations are exactly the same, while the different absolute quantities of Zn2+ ions (different supersaturation degree) do affect the growth of ZnO nanorods.


Room-temperature nonequilibrium growth of controllable ZnO nanorod arrays.

Li Q, Cheng K, Weng W, Song C, Du P, Shen G, Han G - Nanoscale Res Lett (2011)

SEM images of ZnO nanorod arrays with varying the volume of growth media: (a1) 2 mL (sample A); (b1) 10 mL (sample B); (c1) 20 mL (sample C); cross-sectional SEM images of (a2) sample A; (b2) sample B; (c2) sample C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211990&req=5

Figure 3: SEM images of ZnO nanorod arrays with varying the volume of growth media: (a1) 2 mL (sample A); (b1) 10 mL (sample B); (c1) 20 mL (sample C); cross-sectional SEM images of (a2) sample A; (b2) sample B; (c2) sample C.
Mentions: With the same ZnO seed-layer and equivalent concentration, the different volume of growth solution strongly influenced the density and length of the ZnO nanorods, as shown in Figure 3. When the ZnO seed-layer was dipped in the 2-mL growth medium and soaked for 2 h at room temperature (approx. 25°C), a relatively sparse, low dimension, and poorly alignment ZnO nanorods were synthesized, with an average length of 170 nm (Figure 3a). In the case of 10-mL growth medium, the higher density of ZnO nanorods compared with sample A is observed in Figure 3b1, with an average length of 365 nm. When the volume of growth solution increased to 20 mL, ZnO nanorods synthesized on substrate were densely packed and well aligned (Figure 3c1). The SEM cross-sectional image (Figure 3c2) shows the ZnO nanorods are 1100 nm in length. These results mean although the initial Zn2+ ions concentrations are exactly the same, while the different absolute quantities of Zn2+ ions (different supersaturation degree) do affect the growth of ZnO nanorods.

Bottom Line: In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C).It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length.Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science & Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China. wengwj@zju.edu.cn.

ABSTRACT
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

No MeSH data available.


Related in: MedlinePlus