Limits...
Room-temperature nonequilibrium growth of controllable ZnO nanorod arrays.

Li Q, Cheng K, Weng W, Song C, Du P, Shen G, Han G - Nanoscale Res Lett (2011)

Bottom Line: In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C).It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length.Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science & Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China. wengwj@zju.edu.cn.

ABSTRACT
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

No MeSH data available.


Related in: MedlinePlus

SEM images of ZnO nanostructures influenced by different Zn(NO3)2 concentration: (a) 0.025 M; (b) 0.05 M; (c) 0.1 M; (d) 0.25 M.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211990&req=5

Figure 2: SEM images of ZnO nanostructures influenced by different Zn(NO3)2 concentration: (a) 0.025 M; (b) 0.05 M; (c) 0.1 M; (d) 0.25 M.

Mentions: Influences of Zn(NO3)2 concentrations on the final morphology of nanostructures when the value of R was fixed to 1:8 were also investigated, as shown in Figure 2. When the Zn(NO3)2 concentration was lower than 0.05 M (samples E1, E2), few or nearly no nanorods formed (Figure 2a,b). Figure 2c shows that the wide and aggregated nanorods appeared if Zn(NO3)2 concentration was 0.1 M (sample E3). The well-aligned nanorod array with sharp tips could only be acquired when the Zn(NO3)2 concentration reached 0.25 M (Figure 2d).


Room-temperature nonequilibrium growth of controllable ZnO nanorod arrays.

Li Q, Cheng K, Weng W, Song C, Du P, Shen G, Han G - Nanoscale Res Lett (2011)

SEM images of ZnO nanostructures influenced by different Zn(NO3)2 concentration: (a) 0.025 M; (b) 0.05 M; (c) 0.1 M; (d) 0.25 M.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211990&req=5

Figure 2: SEM images of ZnO nanostructures influenced by different Zn(NO3)2 concentration: (a) 0.025 M; (b) 0.05 M; (c) 0.1 M; (d) 0.25 M.
Mentions: Influences of Zn(NO3)2 concentrations on the final morphology of nanostructures when the value of R was fixed to 1:8 were also investigated, as shown in Figure 2. When the Zn(NO3)2 concentration was lower than 0.05 M (samples E1, E2), few or nearly no nanorods formed (Figure 2a,b). Figure 2c shows that the wide and aggregated nanorods appeared if Zn(NO3)2 concentration was 0.1 M (sample E3). The well-aligned nanorod array with sharp tips could only be acquired when the Zn(NO3)2 concentration reached 0.25 M (Figure 2d).

Bottom Line: In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C).It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length.Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science & Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China. wengwj@zju.edu.cn.

ABSTRACT
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.

No MeSH data available.


Related in: MedlinePlus