Limits...
High-precision, large-domain three-dimensional manipulation of nano-materials for fabrication nanodevices.

Zou R, Yu L, Zhang Z, Chen Z, Hu J - Nanoscale Res Lett (2011)

Bottom Line: With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices.Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property.This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. hu.junqing@dhu.edu.cn.

ABSTRACT
Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication.

No MeSH data available.


Related in: MedlinePlus

Manipulating a tapered ZnS nanowire in a form of "middle geometry". (a) Finding a target tapered ZnS nanowire. (b) Electrostatic force launched by a bias voltage. (c) Moving the tapered ZnS nanowire. (d) Placing the tapered ZnS nanowire at a desired location.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211986&req=5

Figure 6: Manipulating a tapered ZnS nanowire in a form of "middle geometry". (a) Finding a target tapered ZnS nanowire. (b) Electrostatic force launched by a bias voltage. (c) Moving the tapered ZnS nanowire. (d) Placing the tapered ZnS nanowire at a desired location.

Mentions: Nano-manipulator for fabrication nanodevices is particularly suitable for industrial applications of localized bottom-up integration due to its nanoscaled spatial resolution, long manipulating distance, no special requirement during the sample process, high efficiency of manipulation and observation, and proven assimilation into production lines. A large quantity of ZnS nanowires, which is dispersed onto Au cantilever, is manipulated by as-fabricated ZnS nanowire probe using the STM-TEM holder. Manipulating left/right geometry of the nanowires, firstly, the target ZnS nanowires were located on Au cantilever by TEM-STM manipulator (Figure 5a). A gentle force pushes the nanowire probe to approach the tip of the target ZnS nanowire (left/right geometry of the nanowires) by TEM-STM manipulator. Then a 9-V DC bias voltage is applied between the ZnS nanowire probe and the target ZnS nanowire on Au cantilever, initiating the electrostatic force. The close connection between the ZnS nanowire probe and target ZnS nanowire occurs using the initiated electrostatic force when the ZnS nanowire probe touches the target ZnS nanowire, as shown in Figure 5b. The target ZnS nanowire is then lifted from the Au cantilever, followed by controllable and precise manipulation with an accuracy of 0.5 nm to destination, i.e., TEM-SEM manipulator (Figure 5c). Finally, the DC bias voltage is unloaded by the dedicated software when the target nanowire is released at desired location, as shown in Figure 5d (also see Movie 1 in Additional file 2). By the same way, manipulating the nanowires in middle geometry is also accomplished, as shown in Figure 6. Figure 6a shows the target ZnS nanowire on Au cantilever by TEM imaging. A considerable force was loaded by the ZnS nanowire probe to the middle of the target nanowire. Then an electrostatic force is launched between the nanowire probe and the target nanowire on Au cantilever by applying 15-V bias voltage. The closely adhesion originated from the electrostatic force occurs, and thus the nanowire probe touches the target ZnS nanowire. The target ZnS nanowire is then lifted from the Au cantilever by electrostatic force (Figure 6b), followed by precise moving controlled by TEM-STM manipulator (Figure 6c). Finally, the bias voltage is unloaded by the dedicated software when the target ZnS nanowire is precisely placed at the desired location (Figure 6d) (also see Movie 2 in the Additional file 2). By fabricating the nanowire probe and applying electrostatic force, the present manipulation technology for creating reconfigurable architectures displays a high precision with an accuracy of 0.5 nm and a 3D-scaled large domain reaching 1 cm, to make the nanodevices with complex structures possible; also, the whole manipulating process is clean, simple, quick, and reliable; it avoids the disadvantages of a long time, high expense, and contaminations involving other methods such as plasma etching, lithography, and so on.


High-precision, large-domain three-dimensional manipulation of nano-materials for fabrication nanodevices.

Zou R, Yu L, Zhang Z, Chen Z, Hu J - Nanoscale Res Lett (2011)

Manipulating a tapered ZnS nanowire in a form of "middle geometry". (a) Finding a target tapered ZnS nanowire. (b) Electrostatic force launched by a bias voltage. (c) Moving the tapered ZnS nanowire. (d) Placing the tapered ZnS nanowire at a desired location.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211986&req=5

Figure 6: Manipulating a tapered ZnS nanowire in a form of "middle geometry". (a) Finding a target tapered ZnS nanowire. (b) Electrostatic force launched by a bias voltage. (c) Moving the tapered ZnS nanowire. (d) Placing the tapered ZnS nanowire at a desired location.
Mentions: Nano-manipulator for fabrication nanodevices is particularly suitable for industrial applications of localized bottom-up integration due to its nanoscaled spatial resolution, long manipulating distance, no special requirement during the sample process, high efficiency of manipulation and observation, and proven assimilation into production lines. A large quantity of ZnS nanowires, which is dispersed onto Au cantilever, is manipulated by as-fabricated ZnS nanowire probe using the STM-TEM holder. Manipulating left/right geometry of the nanowires, firstly, the target ZnS nanowires were located on Au cantilever by TEM-STM manipulator (Figure 5a). A gentle force pushes the nanowire probe to approach the tip of the target ZnS nanowire (left/right geometry of the nanowires) by TEM-STM manipulator. Then a 9-V DC bias voltage is applied between the ZnS nanowire probe and the target ZnS nanowire on Au cantilever, initiating the electrostatic force. The close connection between the ZnS nanowire probe and target ZnS nanowire occurs using the initiated electrostatic force when the ZnS nanowire probe touches the target ZnS nanowire, as shown in Figure 5b. The target ZnS nanowire is then lifted from the Au cantilever, followed by controllable and precise manipulation with an accuracy of 0.5 nm to destination, i.e., TEM-SEM manipulator (Figure 5c). Finally, the DC bias voltage is unloaded by the dedicated software when the target nanowire is released at desired location, as shown in Figure 5d (also see Movie 1 in Additional file 2). By the same way, manipulating the nanowires in middle geometry is also accomplished, as shown in Figure 6. Figure 6a shows the target ZnS nanowire on Au cantilever by TEM imaging. A considerable force was loaded by the ZnS nanowire probe to the middle of the target nanowire. Then an electrostatic force is launched between the nanowire probe and the target nanowire on Au cantilever by applying 15-V bias voltage. The closely adhesion originated from the electrostatic force occurs, and thus the nanowire probe touches the target ZnS nanowire. The target ZnS nanowire is then lifted from the Au cantilever by electrostatic force (Figure 6b), followed by precise moving controlled by TEM-STM manipulator (Figure 6c). Finally, the bias voltage is unloaded by the dedicated software when the target ZnS nanowire is precisely placed at the desired location (Figure 6d) (also see Movie 2 in the Additional file 2). By fabricating the nanowire probe and applying electrostatic force, the present manipulation technology for creating reconfigurable architectures displays a high precision with an accuracy of 0.5 nm and a 3D-scaled large domain reaching 1 cm, to make the nanodevices with complex structures possible; also, the whole manipulating process is clean, simple, quick, and reliable; it avoids the disadvantages of a long time, high expense, and contaminations involving other methods such as plasma etching, lithography, and so on.

Bottom Line: With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices.Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property.This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. hu.junqing@dhu.edu.cn.

ABSTRACT
Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication.

No MeSH data available.


Related in: MedlinePlus