Limits...
Scaling analysis for the investigation of slip mechanisms in nanofluids.

Savithiri S, Pattamatta A, Das SK - Nanoscale Res Lett (2011)

Bottom Line: From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles.The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration.The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

View Article: PubMed Central - HTML - PubMed

Affiliation: Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology - Madras, Chennai 600 036, India. skdas@iitm.ac.in.

ABSTRACT
The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

No MeSH data available.


Related in: MedlinePlus

Effects of particle size in cylindrical particles. (a) Gravity and thermophoresis forces, (b) lift force, (c) Magnus force, and (d) rotational force for water-based nanofluids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211984&req=5

Figure 3: Effects of particle size in cylindrical particles. (a) Gravity and thermophoresis forces, (b) lift force, (c) Magnus force, and (d) rotational force for water-based nanofluids.

Mentions: The results of the scaling analysis on particle size are plotted for cylindrical-shaped nanoparticles in Figures 2 and 3. Here, size of the cylindrical particles is representative of its diameter. From the Figure 2, it is observed that the Brownian force decreases with increasing size of the particles. This is due to the fact that as the particle size increases, the probability for random motion comes down. For a particle size of 1 nm, the Brownian force is 10 orders of magnitude higher compared to that of a particle with size of 80 nm. It is observed that the drag force decreases with increase in size for cylindrical particles. All the other forces show an increase in magnitude with increasing particle diameter.


Scaling analysis for the investigation of slip mechanisms in nanofluids.

Savithiri S, Pattamatta A, Das SK - Nanoscale Res Lett (2011)

Effects of particle size in cylindrical particles. (a) Gravity and thermophoresis forces, (b) lift force, (c) Magnus force, and (d) rotational force for water-based nanofluids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211984&req=5

Figure 3: Effects of particle size in cylindrical particles. (a) Gravity and thermophoresis forces, (b) lift force, (c) Magnus force, and (d) rotational force for water-based nanofluids.
Mentions: The results of the scaling analysis on particle size are plotted for cylindrical-shaped nanoparticles in Figures 2 and 3. Here, size of the cylindrical particles is representative of its diameter. From the Figure 2, it is observed that the Brownian force decreases with increasing size of the particles. This is due to the fact that as the particle size increases, the probability for random motion comes down. For a particle size of 1 nm, the Brownian force is 10 orders of magnitude higher compared to that of a particle with size of 80 nm. It is observed that the drag force decreases with increase in size for cylindrical particles. All the other forces show an increase in magnitude with increasing particle diameter.

Bottom Line: From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles.The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration.The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

View Article: PubMed Central - HTML - PubMed

Affiliation: Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology - Madras, Chennai 600 036, India. skdas@iitm.ac.in.

ABSTRACT
The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

No MeSH data available.


Related in: MedlinePlus