Limits...
Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.


Synthesis process of suspensions containing GONs in organic solvents.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211982&req=5

C1: Synthesis process of suspensions containing GONs in organic solvents.

Mentions: The synthesis process of suspensions of graphene oxide in organic solvents is presented in Scheme 1. At first, nature graphite powder was oxidized to graphite oxide using a modified Hummers method [21,22]. The obtained graphite oxide (0.1 g) was dispersed in 20 mL de-ionized water and exfoliated to generate GONs by ultrasonication for 12 h. The result was a homogeneous dark brown solution (Scheme 1a) of dispersed GONs. Then 0.5 g oleylamine was added in the colloidal suspension. Due to the strong interaction between oleylamine and GONs, oleylamine was absorbed on the surface of GONs, and GONs became hydrophobic GONs-OA, and floated in the water (Scheme 1b). Then 20 mL of n-octane was added into the mixture. The phase transfer process occurred spontaneously, and there was a distinct phase interface between the aqueous and octane in 1 day (Scheme 1c). After removing the aqueous phase using a pipette, the stable suspensions of graphene oxide in octane was obtained.


Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide
Synthesis process of suspensions containing GONs in organic solvents.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211982&req=5

C1: Synthesis process of suspensions containing GONs in organic solvents.
Mentions: The synthesis process of suspensions of graphene oxide in organic solvents is presented in Scheme 1. At first, nature graphite powder was oxidized to graphite oxide using a modified Hummers method [21,22]. The obtained graphite oxide (0.1 g) was dispersed in 20 mL de-ionized water and exfoliated to generate GONs by ultrasonication for 12 h. The result was a homogeneous dark brown solution (Scheme 1a) of dispersed GONs. Then 0.5 g oleylamine was added in the colloidal suspension. Due to the strong interaction between oleylamine and GONs, oleylamine was absorbed on the surface of GONs, and GONs became hydrophobic GONs-OA, and floated in the water (Scheme 1b). Then 20 mL of n-octane was added into the mixture. The phase transfer process occurred spontaneously, and there was a distinct phase interface between the aqueous and octane in 1 day (Scheme 1c). After removing the aqueous phase using a pipette, the stable suspensions of graphene oxide in octane was obtained.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.