Limits...
Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.


UV–Vis spectra for GONs-OA suspensions in n-octane at different weight concentration. The insert shows the linear relationship between the UV–Vis absorbance and the concentration at the wavelength of 500 nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211982&req=5

Figure 7: UV–Vis spectra for GONs-OA suspensions in n-octane at different weight concentration. The insert shows the linear relationship between the UV–Vis absorbance and the concentration at the wavelength of 500 nm.

Mentions: Figure 7 shows UV–Vis absorption spectra of GONs-OA suspensions in n-octane at different weight concentration. Due to the absorbed oleylamine molecules, GONs-OA suspensions present the characteristic absorption band at 267 nm, assigned to the C=C of oleylamine. The band of GONs-OA at 267 nm is so strong as to shadow the typical absorption peak at 230 nm of GONs [9]. According to the Beer's law, there is a linear relationship between the absorbance and concentration of the solution. The solubility of GONs-OA powders in octane could be quantitatively characterized by UV–Vis spectroscopy. Due to the existence of free oleylamine in the suspension, we would not obtain the accurate concentration of GONs-OA based on the peak at 267 nm. Oleylamine has no absorption at 400–800 nm, so we constructed the calibration line by measuring UV–Vis spectra of GONs-OA suspensions in n-octane at different concentration at the wavelength of 500 nm. The inserted figure in Figure 7 shows the relationship between the absorbance at 500 nm and the concentration of GONs-OA. Based on the calibration line, the maximum solubility of GONs-OA in octane solvent was calculated to be 3.82 mg mL-1. Wang et al. used the same method to obtain the solubility of hydrophobic graphene oxide nanosheets prepared via functionalizing with phenylisocynate through a solvothermal synthesis process, and the maximum solubility of GONs in DMF solution was determined to be 0.56 mg mL-1 [9]. Comparing with the solvothermal synthesis process and the three-step method, phase transfer method is very easy and effective for preparing homogeneous and stable suspensions containing graphene oxide in organic solvents.


Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide
UV–Vis spectra for GONs-OA suspensions in n-octane at different weight concentration. The insert shows the linear relationship between the UV–Vis absorbance and the concentration at the wavelength of 500 nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211982&req=5

Figure 7: UV–Vis spectra for GONs-OA suspensions in n-octane at different weight concentration. The insert shows the linear relationship between the UV–Vis absorbance and the concentration at the wavelength of 500 nm.
Mentions: Figure 7 shows UV–Vis absorption spectra of GONs-OA suspensions in n-octane at different weight concentration. Due to the absorbed oleylamine molecules, GONs-OA suspensions present the characteristic absorption band at 267 nm, assigned to the C=C of oleylamine. The band of GONs-OA at 267 nm is so strong as to shadow the typical absorption peak at 230 nm of GONs [9]. According to the Beer's law, there is a linear relationship between the absorbance and concentration of the solution. The solubility of GONs-OA powders in octane could be quantitatively characterized by UV–Vis spectroscopy. Due to the existence of free oleylamine in the suspension, we would not obtain the accurate concentration of GONs-OA based on the peak at 267 nm. Oleylamine has no absorption at 400–800 nm, so we constructed the calibration line by measuring UV–Vis spectra of GONs-OA suspensions in n-octane at different concentration at the wavelength of 500 nm. The inserted figure in Figure 7 shows the relationship between the absorbance at 500 nm and the concentration of GONs-OA. Based on the calibration line, the maximum solubility of GONs-OA in octane solvent was calculated to be 3.82 mg mL-1. Wang et al. used the same method to obtain the solubility of hydrophobic graphene oxide nanosheets prepared via functionalizing with phenylisocynate through a solvothermal synthesis process, and the maximum solubility of GONs in DMF solution was determined to be 0.56 mg mL-1 [9]. Comparing with the solvothermal synthesis process and the three-step method, phase transfer method is very easy and effective for preparing homogeneous and stable suspensions containing graphene oxide in organic solvents.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.