Limits...
Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.


Thermogravimetric curves of oleylamine, GONs-OA, and GONs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211982&req=5

Figure 6: Thermogravimetric curves of oleylamine, GONs-OA, and GONs.

Mentions: Figure 6 shows the thermogravimetric curves of oleylamine, GONs-OA, and GONs. Graphene oxide is thermally unstable, and the thermo-gravimetric analysis of GONs has been investigated in detail by some references [28]. The initial weight loss of GONs below 100 °C is ascribed to the elimination of adsorbed water. The major mass loss is in the range of 150–220 °C, presumably due to pyrolysis of the labile oxygen-containing functional groups, yielding CO, CO2, and steam. For the TG curve of pure oleylamine, there is an obvious weight loss process with an onset temperature 145 °C, corresponding to the boiling point of oleylamine. GONs-OA displays different thermal behaviors. For GONs-OA, below 150 °C there is no weight loss. Because of the hydrophobic property of GONs-OA, polar molecules will not be absorbed on the surface. The onset temperature of GONs-OA is 178 °C, and the main mass loss is in the range of 280–520 °C with the peak at 425 °C. The process is due to the decomposition of the organic functional groups and further carbonization of the graphene backbone. The weight loss for GONs-OA from 50 to 800 °C is 71.7%, mainly due to the absorbed oleylamine molecules. The left 28.3% is graphene oxide. Through a crude calculation, we can obtain the molar ratio of graphene carbon and oleylamine, it is 8.8:1. Because GONs-OA were washed by hot ethanol for 5 times, oleylamine molecules would be absorbed on the surface by monolayer absorption. Therefore, it is estimated that about 11.4% carbon atoms of GONs is absorbed by oleylamine molecules.


Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide
Thermogravimetric curves of oleylamine, GONs-OA, and GONs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211982&req=5

Figure 6: Thermogravimetric curves of oleylamine, GONs-OA, and GONs.
Mentions: Figure 6 shows the thermogravimetric curves of oleylamine, GONs-OA, and GONs. Graphene oxide is thermally unstable, and the thermo-gravimetric analysis of GONs has been investigated in detail by some references [28]. The initial weight loss of GONs below 100 °C is ascribed to the elimination of adsorbed water. The major mass loss is in the range of 150–220 °C, presumably due to pyrolysis of the labile oxygen-containing functional groups, yielding CO, CO2, and steam. For the TG curve of pure oleylamine, there is an obvious weight loss process with an onset temperature 145 °C, corresponding to the boiling point of oleylamine. GONs-OA displays different thermal behaviors. For GONs-OA, below 150 °C there is no weight loss. Because of the hydrophobic property of GONs-OA, polar molecules will not be absorbed on the surface. The onset temperature of GONs-OA is 178 °C, and the main mass loss is in the range of 280–520 °C with the peak at 425 °C. The process is due to the decomposition of the organic functional groups and further carbonization of the graphene backbone. The weight loss for GONs-OA from 50 to 800 °C is 71.7%, mainly due to the absorbed oleylamine molecules. The left 28.3% is graphene oxide. Through a crude calculation, we can obtain the molar ratio of graphene carbon and oleylamine, it is 8.8:1. Because GONs-OA were washed by hot ethanol for 5 times, oleylamine molecules would be absorbed on the surface by monolayer absorption. Therefore, it is estimated that about 11.4% carbon atoms of GONs is absorbed by oleylamine molecules.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.