Limits...
Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.


FT-IR spectra of GONs (a), GONs-OA (b), and oleylamine (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211982&req=5

Figure 3: FT-IR spectra of GONs (a), GONs-OA (b), and oleylamine (c).

Mentions: The phase transfer method is based on the strong interaction between GONs and oleylamine, which is confirmed by the FT-IR spectral analysis. Figure 3a shows the typical absorption bands of GONs, such as O–H stretching vibration (3,400 cm-1), C=O stretching of carboxyl groups situated at edges of GONs sheets (1,730 cm-1), epoxide groups and skeletal ring vibrations (1,630 cm-1) and the stretching vibration of C–O–C (1,184 cm-1) [16]. Figure 3b shows the FT-IR spectrum of GONs-OA powders. The asymmetric bands of the alkyl group at 2,850 and 2,921 cm-1 in GONs-OA correspond to the C–H stretching vibrations in oleylamine. The amine group (N–H) is also observed with a band 1,458 cm-1 for GONs-OA, which corresponds to 1,465 cm-1 in the FT-IR spectrum of oleylamine (Figure 3c). Compared with GONs, GONs-OA do not show the strong absorption at 1,730 cm-1, and two new bands appear at 1,656 and 1,438 cm-1, corresponding to νas(COO-) and νs(COO-), respectively. The facts illustrate that the –COOH groups of GONs is ionized to –COO-, and it clearly confirms that oleylamine is attached to GONs through chemical absorption.


Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide
FT-IR spectra of GONs (a), GONs-OA (b), and oleylamine (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211982&req=5

Figure 3: FT-IR spectra of GONs (a), GONs-OA (b), and oleylamine (c).
Mentions: The phase transfer method is based on the strong interaction between GONs and oleylamine, which is confirmed by the FT-IR spectral analysis. Figure 3a shows the typical absorption bands of GONs, such as O–H stretching vibration (3,400 cm-1), C=O stretching of carboxyl groups situated at edges of GONs sheets (1,730 cm-1), epoxide groups and skeletal ring vibrations (1,630 cm-1) and the stretching vibration of C–O–C (1,184 cm-1) [16]. Figure 3b shows the FT-IR spectrum of GONs-OA powders. The asymmetric bands of the alkyl group at 2,850 and 2,921 cm-1 in GONs-OA correspond to the C–H stretching vibrations in oleylamine. The amine group (N–H) is also observed with a band 1,458 cm-1 for GONs-OA, which corresponds to 1,465 cm-1 in the FT-IR spectrum of oleylamine (Figure 3c). Compared with GONs, GONs-OA do not show the strong absorption at 1,730 cm-1, and two new bands appear at 1,656 and 1,438 cm-1, corresponding to νas(COO-) and νs(COO-), respectively. The facts illustrate that the –COOH groups of GONs is ionized to –COO-, and it clearly confirms that oleylamine is attached to GONs through chemical absorption.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Phase transfer method has been developed for preparing homogeneous and stable graphene oxide colloids. Graphene oxide nanosheets (GONs) were successfully transferred from water to n-octane after modification by oleylamine. Corrugation and scrolling exist dominantly in the modified GONs. GONs were single layered with the maximum solubility in n-octane up to 3.82 mg mL-1. Oleylamine molecules chemically attach onto the GONs. Compared with traditional strategies, the phase transfer method has the features of simplicity and high efficiency.

No MeSH data available.