Limits...
Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light.

Meng ZD, Zhu L, Choi JG, Park CY, Oh WC - Nanoscale Res Lett (2011)

Bottom Line: The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis.Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light.An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706, South Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

No MeSH data available.


XRD patterns of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211879&req=5

Figure 4: XRD patterns of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).

Mentions: XRD was used to determine the crystallographic structure of the inorganic component of the composite. Figure 4 shows the XRD patterns of the WO3-treated fullerene, fullerene-supported TiO2, and WO3-fullerene/TiO2. In Figure 4, A is anatase and W is the monoclinic phase of tungsten oxide. The structure of WO3-fullerene composites showed monoclinic phase of tungsten oxide. The peaks at 23.15°, 23.61°, 24.37°, 26.61°, 33.33°, 33.65°, 34.01°, 41.51°, 44.88°, 47.22°, 49.32°, 50.48°, 53.46°, and 55.11° 2θ were assigned to diffraction planes of (001), (020), (200), (120), (111), (021), (201), (220), (221), (131), (002), (400), (112), (022), and (401) of monoclinic WO3 phase [20,21]. WO3-fullerene/TiO2 and fullerene-TiO2 showed anatase phase of TiO2. The crystal structure of TiO2 is determined mainly by the heat-treated temperature. The peaks at 25.3°, 37.5°, 48.0°, 53.8°, 54.9°, and 62.5° 2θ were assigned to the (101), (004), (200), (105), (211), and (204) planes of anatase [22-24], indicating the developed fullerene/TiO2 composites existed as anatase. In the XRD patterns for WO3-fullerene/TiO2, the peaks at 23.15°, 23.61°, 24.37°, 26.61°, 33.33°, 33.65°, 34.01°, and 41.51° 2θ were assigned to diffraction planes of (001), (020), (200), (120), (021), (201), (220), and (221) of monoclinic WO3 phase. Due to the small content of tungsten oxide (shown in Table 2), the intension of the peaks are smaller than that of WO3-fullerene, and the other peaks cannot be found in these patterns.


Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light.

Meng ZD, Zhu L, Choi JG, Park CY, Oh WC - Nanoscale Res Lett (2011)

XRD patterns of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211879&req=5

Figure 4: XRD patterns of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).
Mentions: XRD was used to determine the crystallographic structure of the inorganic component of the composite. Figure 4 shows the XRD patterns of the WO3-treated fullerene, fullerene-supported TiO2, and WO3-fullerene/TiO2. In Figure 4, A is anatase and W is the monoclinic phase of tungsten oxide. The structure of WO3-fullerene composites showed monoclinic phase of tungsten oxide. The peaks at 23.15°, 23.61°, 24.37°, 26.61°, 33.33°, 33.65°, 34.01°, 41.51°, 44.88°, 47.22°, 49.32°, 50.48°, 53.46°, and 55.11° 2θ were assigned to diffraction planes of (001), (020), (200), (120), (111), (021), (201), (220), (221), (131), (002), (400), (112), (022), and (401) of monoclinic WO3 phase [20,21]. WO3-fullerene/TiO2 and fullerene-TiO2 showed anatase phase of TiO2. The crystal structure of TiO2 is determined mainly by the heat-treated temperature. The peaks at 25.3°, 37.5°, 48.0°, 53.8°, 54.9°, and 62.5° 2θ were assigned to the (101), (004), (200), (105), (211), and (204) planes of anatase [22-24], indicating the developed fullerene/TiO2 composites existed as anatase. In the XRD patterns for WO3-fullerene/TiO2, the peaks at 23.15°, 23.61°, 24.37°, 26.61°, 33.33°, 33.65°, 34.01°, and 41.51° 2θ were assigned to diffraction planes of (001), (020), (200), (120), (021), (201), (220), and (221) of monoclinic WO3 phase. Due to the small content of tungsten oxide (shown in Table 2), the intension of the peaks are smaller than that of WO3-fullerene, and the other peaks cannot be found in these patterns.

Bottom Line: The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis.Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light.An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706, South Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

No MeSH data available.