Limits...
Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light.

Meng ZD, Zhu L, Choi JG, Park CY, Oh WC - Nanoscale Res Lett (2011)

Bottom Line: The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis.Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light.An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706, South Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

No MeSH data available.


SEM images of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211879&req=5

Figure 2: SEM images of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).

Mentions: The micro-surface structures and morphology of the fullerene-TiO2, WO3-fullerene, and WO3-fullerene/TiO2 composites were characterized by SEM (Figure 2). SEM is used for inspecting topographies of specimens at very high magnifications using a piece of equipment called the scanning electron microscope. Figure 2 shows the macroscopic changes in the morphology of the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2. In Figure 2a, WO3-fullerene has the small particle size and a good dispersion. The fullerene particles were spherical particles in shape with small facets, and fullerene has a good dispersion [18]. For the fullerene-TiO2 sample (Figure 2b), the fullerene particles were well attached to the TiO2 surface with a uniform distribution, but the particle size is bigger than WO3-fullerene. Zhang et al. reported that a good dispersion of small particles could provide more reactive sites for the reactants than aggregated particles [19]. At the same time, the conductivity of fullerene can facilitate electron transfer between the adsorbed dye molecules and catalyst substrate. With the WO3-fullerene/TiO2 samples (Figure 2c), tungsten particles were fixed to the TiO2 surface and fullerene particles in some spherical particles, but the distribution was not uniform. There was no clear difference in the intensity of aggregation. Because of the aggregation, fullerene cannot show clearly. The particles were strongly aggregated and that discrete particles were impossible to find so the average particle size was difficult to obtain. It may be that particles with similar or close crystallographic orientations were formed bulky crystal or quasi-crystals with modulated surfaces and regular shapes.


Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light.

Meng ZD, Zhu L, Choi JG, Park CY, Oh WC - Nanoscale Res Lett (2011)

SEM images of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211879&req=5

Figure 2: SEM images of WO3-fullerene (a), fullerene-TiO2 (b), and WO3-fullerene/TiO2 (c).
Mentions: The micro-surface structures and morphology of the fullerene-TiO2, WO3-fullerene, and WO3-fullerene/TiO2 composites were characterized by SEM (Figure 2). SEM is used for inspecting topographies of specimens at very high magnifications using a piece of equipment called the scanning electron microscope. Figure 2 shows the macroscopic changes in the morphology of the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2. In Figure 2a, WO3-fullerene has the small particle size and a good dispersion. The fullerene particles were spherical particles in shape with small facets, and fullerene has a good dispersion [18]. For the fullerene-TiO2 sample (Figure 2b), the fullerene particles were well attached to the TiO2 surface with a uniform distribution, but the particle size is bigger than WO3-fullerene. Zhang et al. reported that a good dispersion of small particles could provide more reactive sites for the reactants than aggregated particles [19]. At the same time, the conductivity of fullerene can facilitate electron transfer between the adsorbed dye molecules and catalyst substrate. With the WO3-fullerene/TiO2 samples (Figure 2c), tungsten particles were fixed to the TiO2 surface and fullerene particles in some spherical particles, but the distribution was not uniform. There was no clear difference in the intensity of aggregation. Because of the aggregation, fullerene cannot show clearly. The particles were strongly aggregated and that discrete particles were impossible to find so the average particle size was difficult to obtain. It may be that particles with similar or close crystallographic orientations were formed bulky crystal or quasi-crystals with modulated surfaces and regular shapes.

Bottom Line: The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis.Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light.An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706, South Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3.

No MeSH data available.