Limits...
Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film.

Shin JH, Lee SH, Byeon KJ, Han KS, Lee H, Tsunozaki K - Nanoscale Res Lett (2011)

Bottom Line: Therefore, the development of low-cost, transparent, and flexible templates is essential.In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold.Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science and Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, South Korea. heonlee@korea.ac.kr.

ABSTRACT
UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography.

No MeSH data available.


Related in: MedlinePlus

Photographic images. (a) Si master mold, (b) hot-embossed fluorinated polymer-coated flexible PET film, (c) imprinted resist patterns on flat Si substrates using hot-embossed PET film shown in b, and (d) imprinted resist patterns on curved acryl substrates using hot-embossed PET film shown in (b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211878&req=5

Figure 5: Photographic images. (a) Si master mold, (b) hot-embossed fluorinated polymer-coated flexible PET film, (c) imprinted resist patterns on flat Si substrates using hot-embossed PET film shown in b, and (d) imprinted resist patterns on curved acryl substrates using hot-embossed PET film shown in (b).

Mentions: Figure 5a,b,c,d shows the photographic images of the Si master mold, hot-embossed fluorinated polymer-coated flexible PET film and imprinted resist patterns on the flat Si substrate and curved acryl substrate made using the hot-embossed PET film, respectively. Both the hot embossing and UV nanoimprint patterning processes were done on large size substrates without any noticeable defects.


Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film.

Shin JH, Lee SH, Byeon KJ, Han KS, Lee H, Tsunozaki K - Nanoscale Res Lett (2011)

Photographic images. (a) Si master mold, (b) hot-embossed fluorinated polymer-coated flexible PET film, (c) imprinted resist patterns on flat Si substrates using hot-embossed PET film shown in b, and (d) imprinted resist patterns on curved acryl substrates using hot-embossed PET film shown in (b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211878&req=5

Figure 5: Photographic images. (a) Si master mold, (b) hot-embossed fluorinated polymer-coated flexible PET film, (c) imprinted resist patterns on flat Si substrates using hot-embossed PET film shown in b, and (d) imprinted resist patterns on curved acryl substrates using hot-embossed PET film shown in (b).
Mentions: Figure 5a,b,c,d shows the photographic images of the Si master mold, hot-embossed fluorinated polymer-coated flexible PET film and imprinted resist patterns on the flat Si substrate and curved acryl substrate made using the hot-embossed PET film, respectively. Both the hot embossing and UV nanoimprint patterning processes were done on large size substrates without any noticeable defects.

Bottom Line: Therefore, the development of low-cost, transparent, and flexible templates is essential.In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold.Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science and Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, South Korea. heonlee@korea.ac.kr.

ABSTRACT
UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography.

No MeSH data available.


Related in: MedlinePlus