Limits...
Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film.

Shin JH, Lee SH, Byeon KJ, Han KS, Lee H, Tsunozaki K - Nanoscale Res Lett (2011)

Bottom Line: Therefore, the development of low-cost, transparent, and flexible templates is essential.In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold.Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science and Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, South Korea. heonlee@korea.ac.kr.

ABSTRACT
UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography.

No MeSH data available.


Related in: MedlinePlus

Imprinting process using replicated fluorinated polymer-coated flexible PET mold. (a) Imprinted on flat Si substrates and (b) imprinted on curved acryl substrates.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211878&req=5

Figure 4: Imprinting process using replicated fluorinated polymer-coated flexible PET mold. (a) Imprinted on flat Si substrates and (b) imprinted on curved acryl substrates.

Mentions: A hot-embossed flexible PET mold was used as a template for UV nanoimprint lithography without the coating of an anti-stiction layer. As shown in Figure 4a,b, the UV nanoimprint process was performed on both a flat Si wafer and curved acryl substrate. The same imprinting system as that employed for the hot embossing process of the fluorinated polymer-coated flexible PET mold was used. A monomer-based UV curable resin, NIP-K28™, made by the ChemOptics Company (Daejeon, South Korea) was used. As shown in a previous report [21], an isotropic pressure was applied through a flexible membrane to assure uniform pressing between the PET film mold and substrate. Due to the flexibility of the PET mold, conformal contact can be achieved between the PET mold and curved substrate, and a uniform pressing force can be delivered. A pressure of 20 bars and UV light with a wavelength of 365 nm were used in the imprinting process.


Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film.

Shin JH, Lee SH, Byeon KJ, Han KS, Lee H, Tsunozaki K - Nanoscale Res Lett (2011)

Imprinting process using replicated fluorinated polymer-coated flexible PET mold. (a) Imprinted on flat Si substrates and (b) imprinted on curved acryl substrates.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211878&req=5

Figure 4: Imprinting process using replicated fluorinated polymer-coated flexible PET mold. (a) Imprinted on flat Si substrates and (b) imprinted on curved acryl substrates.
Mentions: A hot-embossed flexible PET mold was used as a template for UV nanoimprint lithography without the coating of an anti-stiction layer. As shown in Figure 4a,b, the UV nanoimprint process was performed on both a flat Si wafer and curved acryl substrate. The same imprinting system as that employed for the hot embossing process of the fluorinated polymer-coated flexible PET mold was used. A monomer-based UV curable resin, NIP-K28™, made by the ChemOptics Company (Daejeon, South Korea) was used. As shown in a previous report [21], an isotropic pressure was applied through a flexible membrane to assure uniform pressing between the PET film mold and substrate. Due to the flexibility of the PET mold, conformal contact can be achieved between the PET mold and curved substrate, and a uniform pressing force can be delivered. A pressure of 20 bars and UV light with a wavelength of 365 nm were used in the imprinting process.

Bottom Line: Therefore, the development of low-cost, transparent, and flexible templates is essential.In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold.Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science and Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713, South Korea. heonlee@korea.ac.kr.

ABSTRACT
UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography.

No MeSH data available.


Related in: MedlinePlus