Limits...
Thermal properties of carbon black aqueous nanofluids for solar absorption.

Han D, Meng Z, Wu D, Zhang C, Zhu H - Nanoscale Res Lett (2011)

Bottom Line: The results showed that the nanofluids of high-volume fraction had better photothermal properties.Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm.Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. htzhu1970@163.com.

ABSTRACT
In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

No MeSH data available.


Related in: MedlinePlus

Characterization of the typical sample. (a) TEM image, (b) size distributions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211877&req=5

Figure 2: Characterization of the typical sample. (a) TEM image, (b) size distributions.

Mentions: Figure 2a shows the TEM image of the carbon black nanofluids. The primary nanoparticles are about 20 nm in diameter and aggregate to short clusters. Figure 2b shows the size distributions of carbon black nanofluids. The particle size of the carbon black nanofluid is about 50 to 500 nm and has a mean size of 190 nm. The agglomeration of the nanoparticles and the hydrodynamic diameter measured by the Malvern particle size analyzer are responsible for the larger particle size [21].


Thermal properties of carbon black aqueous nanofluids for solar absorption.

Han D, Meng Z, Wu D, Zhang C, Zhu H - Nanoscale Res Lett (2011)

Characterization of the typical sample. (a) TEM image, (b) size distributions.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211877&req=5

Figure 2: Characterization of the typical sample. (a) TEM image, (b) size distributions.
Mentions: Figure 2a shows the TEM image of the carbon black nanofluids. The primary nanoparticles are about 20 nm in diameter and aggregate to short clusters. Figure 2b shows the size distributions of carbon black nanofluids. The particle size of the carbon black nanofluid is about 50 to 500 nm and has a mean size of 190 nm. The agglomeration of the nanoparticles and the hydrodynamic diameter measured by the Malvern particle size analyzer are responsible for the larger particle size [21].

Bottom Line: The results showed that the nanofluids of high-volume fraction had better photothermal properties.Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm.Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. htzhu1970@163.com.

ABSTRACT
In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

No MeSH data available.


Related in: MedlinePlus