Limits...
Al2O3-based nanofluids: a review.

Sridhara V, Satapathy LN - Nanoscale Res Lett (2011)

Bottom Line: These suspended nanoparticles can change the transport and thermal properties of the base fluid.As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems.The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

View Article: PubMed Central - HTML - PubMed

Affiliation: Ceramic Technological Institute, BHEL, Malleswaram Complex, Bangalore 560012, India. satpathy@bhelepd.com.

ABSTRACT
Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

No MeSH data available.


Related in: MedlinePlus

Effect of base fluids on thermal conductivity of Al2O3-based nanofluids. Water NF [7], EG NF [18], PO NF [16], TO NF [12], EO NF [8].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211876&req=5

Figure 4: Effect of base fluids on thermal conductivity of Al2O3-based nanofluids. Water NF [7], EG NF [18], PO NF [16], TO NF [12], EO NF [8].

Mentions: The effect of base fluid on thermal conductivity is shown in Figure 4. The result in Figure 4 demonstrates that the thermal conductivity enhancement is least for the water-based nanofluids compared with other nanofluids. This result is encouraging because heat transfer enhancement is often most needed when poorer heat transfer fluids are involved. The enhancement in the case of PO is 38% at 5 vol.% compared to that of 20% at 4 vol.% TO in contrast to 10.8% enhancement with the same volume fraction of nanoparticles in water [21]. Figure 4 thus categorically indicated that the thermal conductivity enhancement for the poorer heat transfer fluids is good compared to the fluids with better thermal conductivity such as water.


Al2O3-based nanofluids: a review.

Sridhara V, Satapathy LN - Nanoscale Res Lett (2011)

Effect of base fluids on thermal conductivity of Al2O3-based nanofluids. Water NF [7], EG NF [18], PO NF [16], TO NF [12], EO NF [8].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211876&req=5

Figure 4: Effect of base fluids on thermal conductivity of Al2O3-based nanofluids. Water NF [7], EG NF [18], PO NF [16], TO NF [12], EO NF [8].
Mentions: The effect of base fluid on thermal conductivity is shown in Figure 4. The result in Figure 4 demonstrates that the thermal conductivity enhancement is least for the water-based nanofluids compared with other nanofluids. This result is encouraging because heat transfer enhancement is often most needed when poorer heat transfer fluids are involved. The enhancement in the case of PO is 38% at 5 vol.% compared to that of 20% at 4 vol.% TO in contrast to 10.8% enhancement with the same volume fraction of nanoparticles in water [21]. Figure 4 thus categorically indicated that the thermal conductivity enhancement for the poorer heat transfer fluids is good compared to the fluids with better thermal conductivity such as water.

Bottom Line: These suspended nanoparticles can change the transport and thermal properties of the base fluid.As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems.The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

View Article: PubMed Central - HTML - PubMed

Affiliation: Ceramic Technological Institute, BHEL, Malleswaram Complex, Bangalore 560012, India. satpathy@bhelepd.com.

ABSTRACT
Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

No MeSH data available.


Related in: MedlinePlus