Limits...
Al2O3-based nanofluids: a review.

Sridhara V, Satapathy LN - Nanoscale Res Lett (2011)

Bottom Line: These suspended nanoparticles can change the transport and thermal properties of the base fluid.As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems.The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

View Article: PubMed Central - HTML - PubMed

Affiliation: Ceramic Technological Institute, BHEL, Malleswaram Complex, Bangalore 560012, India. satpathy@bhelepd.com.

ABSTRACT
Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

No MeSH data available.


Related in: MedlinePlus

Effect of particle size on thermal conductivity of ethylene glycol-based Al2O3 nanofluids. 15 nm [16], 20 nm [11], 28 nm [8], 35 nm [18], 38.4 nm [1], 40 nm [14], 60.4 nm [16], 80 nm [20].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211876&req=5

Figure 3: Effect of particle size on thermal conductivity of ethylene glycol-based Al2O3 nanofluids. 15 nm [16], 20 nm [11], 28 nm [8], 35 nm [18], 38.4 nm [1], 40 nm [14], 60.4 nm [16], 80 nm [20].

Mentions: Figure 2 demonstrates the effect of particle size on thermal conductivity of Al2O3-based nanofluids; the particles used were in the range of 13 to 150 nm. Alumina, 38.4 nm, in water resulted in thermal conductivity enhancement in the range of 2% to 10% in two studies [1,7] but up to 21% in another study [16]. The thermal conductivity enhancement for the nanofluids with 28 nm [8] particles was lying in between that of 38.4 and 60.4 nm, which cannot be explained. Murshed et al. [20] observed higher enhancement with 80- and 150-nm-sized particles at 1 vol.% compared to the nanofluids with 2.5 vol.% of 28-nm particles in ethylene glycol-based Al2O3 nanofluids as shown in Figure 3. The authors have demonstrated that 80-nm particles showed higher thermal conductivity enhancement at 1 vol.% compared to similar data reported earlier [1,11,14]. Xie et al. [16] used 15- and 60.4-nm-sized particles, observed higher thermal conductivity enhancement for larger nanoparticles in ethylene glycol-based nanofluids. The results cited here do not correlate the size effect of nanoparticles in thermal conductivity enhancement. More research is required to understand this size effect.


Al2O3-based nanofluids: a review.

Sridhara V, Satapathy LN - Nanoscale Res Lett (2011)

Effect of particle size on thermal conductivity of ethylene glycol-based Al2O3 nanofluids. 15 nm [16], 20 nm [11], 28 nm [8], 35 nm [18], 38.4 nm [1], 40 nm [14], 60.4 nm [16], 80 nm [20].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211876&req=5

Figure 3: Effect of particle size on thermal conductivity of ethylene glycol-based Al2O3 nanofluids. 15 nm [16], 20 nm [11], 28 nm [8], 35 nm [18], 38.4 nm [1], 40 nm [14], 60.4 nm [16], 80 nm [20].
Mentions: Figure 2 demonstrates the effect of particle size on thermal conductivity of Al2O3-based nanofluids; the particles used were in the range of 13 to 150 nm. Alumina, 38.4 nm, in water resulted in thermal conductivity enhancement in the range of 2% to 10% in two studies [1,7] but up to 21% in another study [16]. The thermal conductivity enhancement for the nanofluids with 28 nm [8] particles was lying in between that of 38.4 and 60.4 nm, which cannot be explained. Murshed et al. [20] observed higher enhancement with 80- and 150-nm-sized particles at 1 vol.% compared to the nanofluids with 2.5 vol.% of 28-nm particles in ethylene glycol-based Al2O3 nanofluids as shown in Figure 3. The authors have demonstrated that 80-nm particles showed higher thermal conductivity enhancement at 1 vol.% compared to similar data reported earlier [1,11,14]. Xie et al. [16] used 15- and 60.4-nm-sized particles, observed higher thermal conductivity enhancement for larger nanoparticles in ethylene glycol-based nanofluids. The results cited here do not correlate the size effect of nanoparticles in thermal conductivity enhancement. More research is required to understand this size effect.

Bottom Line: These suspended nanoparticles can change the transport and thermal properties of the base fluid.As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems.The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

View Article: PubMed Central - HTML - PubMed

Affiliation: Ceramic Technological Institute, BHEL, Malleswaram Complex, Bangalore 560012, India. satpathy@bhelepd.com.

ABSTRACT
Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

No MeSH data available.


Related in: MedlinePlus