Limits...
Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy.

Xing F, Wang J, Hu M, Yu Y, Chen G, Liu J - Nanoscale Res Lett (2011)

Bottom Line: AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer.The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them.These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China. tfyxing@jnu.edu.cn.

ABSTRACT
A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

No MeSH data available.


Related in: MedlinePlus

Quantitative analysis of the surface roughness and the height of immature and mature BMDCs. (A, B) AFM was exploited to show topographic images of the surface nanostructure of the immature BMDCs treated with 10.0 μg/L of GM-CSF plus 10.0 μg/L of IL-4 (A) as the control or the mature BMDCs stimulated with 1.0 mg/L of LPS (B) in the same scanning area of 5 × 5 μm; (C) The root-mean-square roughness (Rrms or Rq) and average roughness (Ra) on the surface of the immature BMDCs (A) and the mature BMDCs (B) were quantitatively analyzed via the formulas as described in the section of "Materials and methods." (D) The average heights of immature and mature BMDCs were statistically quantified, respectively. n = 10; *P < 0.05, compared with the control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211875&req=5

Figure 4: Quantitative analysis of the surface roughness and the height of immature and mature BMDCs. (A, B) AFM was exploited to show topographic images of the surface nanostructure of the immature BMDCs treated with 10.0 μg/L of GM-CSF plus 10.0 μg/L of IL-4 (A) as the control or the mature BMDCs stimulated with 1.0 mg/L of LPS (B) in the same scanning area of 5 × 5 μm; (C) The root-mean-square roughness (Rrms or Rq) and average roughness (Ra) on the surface of the immature BMDCs (A) and the mature BMDCs (B) were quantitatively analyzed via the formulas as described in the section of "Materials and methods." (D) The average heights of immature and mature BMDCs were statistically quantified, respectively. n = 10; *P < 0.05, compared with the control.

Mentions: Compared with both optical microscopy and SEM, AFM has some unique advantages, such as clearer images, easy sample preparation, extensive environments (in air or liquid allowing cells to "stay alive") of sample to escape from the damage of reagents, strong electrical field, and ultrahigh vacuum in electron microscopy, and so on [22,23]. Therefore, a comparative study of immature and immature BMDCs was carried out by AFM to visualize and quantify nanostructures of them. AFM images included single and multiple BMDCs, two and three dimensions, low and high resolutions, cell height profile and histogram, topography, and roughness on the surface of the cells (Figure 3). The immature BMDCs treated with rmGM-CSF plus rmIL-4 were shown on Figure 3A-3G, and the mature BMDCs stimulated by addition of LPS on Figure 3H-3N, which provided the quantitative topographic information and the error signal images for revealing fine surface details. The immature BMDCs appeared mainly round, and around 18 × 18 μm in scanning area (Figure 3B,D) with uniformly smooth cell surface and approximately 2.5 μm in height on the center (Figure 3C). However, the mature BMDCs displayed an irregular shape with numerous pseudopodia or lamellapodia, and ridgy and ruffles on the surface of the cell membrane in addition to becoming larger and longer. Some of them were around 30 × 30 μm in scanning area (Figure 3I,K) and approximately 5.0 μm in height on the center (Figure 3J); 5 × 5 μm of the area was scanned respectively on the edge and top surface of the cells (Figure 3E,F,L,M). Quantitative analysis showed that the granule size on the surface of the mature BMDCs (Figure 3M,N) was much higher than that of the immature BMDCs (Figure 3F,G). At the edge of the mature BMDCs, there were some longer and more pseudopods (Figure 3K,L), but shorter and less ones in the immature BMDCs could be found (Figure 3D,E). The roughness on the surface of the mature BMDCs (Figure 3M,N) was much higher than that of the immature BMDCs as well (Figure 3F,G and Figure 4). There exist, to date, no detailed reports involving nanostructure comparison of both immature and mature BMDCs. Thus, the foregoing results would be helpful for profoundly understanding the morphologic properties and functional foundation of both immature and mature BMDCs. Obviously, AFM-revealed features could not be replaced by SEM. The difference between the spatial resolutions may be due to different principles exploited by both SEM and AFM. AFM scans cell surface with a tip probe, whereas SEM uses an electron beam to obtain the image of cell surface [7]. Besides, easy sample preparation without conductive coating could protect AFM image from damage of the sample [22,24]. In addition to providing topographical images of cell surfaces with nanometer- to angstrom-scale resolution, forces between single molecule and mechanical property of cells can be investigated by AFM. This quality can distinguish AFM from conventional imaging techniques of comparable resolution, such as electron microscopy, too.


Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy.

Xing F, Wang J, Hu M, Yu Y, Chen G, Liu J - Nanoscale Res Lett (2011)

Quantitative analysis of the surface roughness and the height of immature and mature BMDCs. (A, B) AFM was exploited to show topographic images of the surface nanostructure of the immature BMDCs treated with 10.0 μg/L of GM-CSF plus 10.0 μg/L of IL-4 (A) as the control or the mature BMDCs stimulated with 1.0 mg/L of LPS (B) in the same scanning area of 5 × 5 μm; (C) The root-mean-square roughness (Rrms or Rq) and average roughness (Ra) on the surface of the immature BMDCs (A) and the mature BMDCs (B) were quantitatively analyzed via the formulas as described in the section of "Materials and methods." (D) The average heights of immature and mature BMDCs were statistically quantified, respectively. n = 10; *P < 0.05, compared with the control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211875&req=5

Figure 4: Quantitative analysis of the surface roughness and the height of immature and mature BMDCs. (A, B) AFM was exploited to show topographic images of the surface nanostructure of the immature BMDCs treated with 10.0 μg/L of GM-CSF plus 10.0 μg/L of IL-4 (A) as the control or the mature BMDCs stimulated with 1.0 mg/L of LPS (B) in the same scanning area of 5 × 5 μm; (C) The root-mean-square roughness (Rrms or Rq) and average roughness (Ra) on the surface of the immature BMDCs (A) and the mature BMDCs (B) were quantitatively analyzed via the formulas as described in the section of "Materials and methods." (D) The average heights of immature and mature BMDCs were statistically quantified, respectively. n = 10; *P < 0.05, compared with the control.
Mentions: Compared with both optical microscopy and SEM, AFM has some unique advantages, such as clearer images, easy sample preparation, extensive environments (in air or liquid allowing cells to "stay alive") of sample to escape from the damage of reagents, strong electrical field, and ultrahigh vacuum in electron microscopy, and so on [22,23]. Therefore, a comparative study of immature and immature BMDCs was carried out by AFM to visualize and quantify nanostructures of them. AFM images included single and multiple BMDCs, two and three dimensions, low and high resolutions, cell height profile and histogram, topography, and roughness on the surface of the cells (Figure 3). The immature BMDCs treated with rmGM-CSF plus rmIL-4 were shown on Figure 3A-3G, and the mature BMDCs stimulated by addition of LPS on Figure 3H-3N, which provided the quantitative topographic information and the error signal images for revealing fine surface details. The immature BMDCs appeared mainly round, and around 18 × 18 μm in scanning area (Figure 3B,D) with uniformly smooth cell surface and approximately 2.5 μm in height on the center (Figure 3C). However, the mature BMDCs displayed an irregular shape with numerous pseudopodia or lamellapodia, and ridgy and ruffles on the surface of the cell membrane in addition to becoming larger and longer. Some of them were around 30 × 30 μm in scanning area (Figure 3I,K) and approximately 5.0 μm in height on the center (Figure 3J); 5 × 5 μm of the area was scanned respectively on the edge and top surface of the cells (Figure 3E,F,L,M). Quantitative analysis showed that the granule size on the surface of the mature BMDCs (Figure 3M,N) was much higher than that of the immature BMDCs (Figure 3F,G). At the edge of the mature BMDCs, there were some longer and more pseudopods (Figure 3K,L), but shorter and less ones in the immature BMDCs could be found (Figure 3D,E). The roughness on the surface of the mature BMDCs (Figure 3M,N) was much higher than that of the immature BMDCs as well (Figure 3F,G and Figure 4). There exist, to date, no detailed reports involving nanostructure comparison of both immature and mature BMDCs. Thus, the foregoing results would be helpful for profoundly understanding the morphologic properties and functional foundation of both immature and mature BMDCs. Obviously, AFM-revealed features could not be replaced by SEM. The difference between the spatial resolutions may be due to different principles exploited by both SEM and AFM. AFM scans cell surface with a tip probe, whereas SEM uses an electron beam to obtain the image of cell surface [7]. Besides, easy sample preparation without conductive coating could protect AFM image from damage of the sample [22,24]. In addition to providing topographical images of cell surfaces with nanometer- to angstrom-scale resolution, forces between single molecule and mechanical property of cells can be investigated by AFM. This quality can distinguish AFM from conventional imaging techniques of comparable resolution, such as electron microscopy, too.

Bottom Line: AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer.The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them.These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China. tfyxing@jnu.edu.cn.

ABSTRACT
A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

No MeSH data available.


Related in: MedlinePlus