Limits...
Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field.

Zarenia M, Pereira JM, Peeters FM, de Aquino Farias G - Nanoscale Res Lett (2011)

Bottom Line: We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene.These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil. pereira@fisica.ufc.br.

ABSTRACT
We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

No MeSH data available.


(Color online) Oscillator strength for the transition between the topological states of the single kink profile (The states are labeled by (1), (2) in Fig. 2) and the corresponding transition energies ΔE as function of (a,c) the y-component of the wavelength  and (b,d) the external magnetic field B0. The inset in (a) shows the wavespinors for kyl = 0.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211872&req=5

Figure 4: (Color online) Oscillator strength for the transition between the topological states of the single kink profile (The states are labeled by (1), (2) in Fig. 2) and the corresponding transition energies ΔE as function of (a,c) the y-component of the wavelength and (b,d) the external magnetic field B0. The inset in (a) shows the wavespinors for kyl = 0.

Mentions: where, i = a, b. Figure 4 shows the oscillator strength and the corresponding transition energy ΔE for the topological states of a single kink profile. The results are presented as function of (panels (a,c)) and the external magnetic field (panels (b,d)). The topological states are indicated by (1), (2) in Figure 2(a). The property of the topological levels leads to a symmetric behavior around for the oscillator strength. The results in Figure 4(a) show a zero value for the oscillator strength at . As shown in the inset of Figure 4(a) the wavespinors for the first state and the second one at are related as and which results / <ψ†/ x /ψ > /2 = 0 in Eq. (5). Panel 4(b) presents the oscillator strength as function of magnetic field for several values of . The presence of an external magnetic field decreases the oscillator strength at large momentum whereas the B0 = 0 result exhibits an increase in the oscillator strength (blue dashed curve in (a)). The reason is that a large magnetic field together with a large momentum weakly affects the topological states of the single kink profile (see Figure 3(b)). Note that the oscillator strength vs magnetic field is zero for (dotted line in panel (b)).


Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field.

Zarenia M, Pereira JM, Peeters FM, de Aquino Farias G - Nanoscale Res Lett (2011)

(Color online) Oscillator strength for the transition between the topological states of the single kink profile (The states are labeled by (1), (2) in Fig. 2) and the corresponding transition energies ΔE as function of (a,c) the y-component of the wavelength  and (b,d) the external magnetic field B0. The inset in (a) shows the wavespinors for kyl = 0.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211872&req=5

Figure 4: (Color online) Oscillator strength for the transition between the topological states of the single kink profile (The states are labeled by (1), (2) in Fig. 2) and the corresponding transition energies ΔE as function of (a,c) the y-component of the wavelength and (b,d) the external magnetic field B0. The inset in (a) shows the wavespinors for kyl = 0.
Mentions: where, i = a, b. Figure 4 shows the oscillator strength and the corresponding transition energy ΔE for the topological states of a single kink profile. The results are presented as function of (panels (a,c)) and the external magnetic field (panels (b,d)). The topological states are indicated by (1), (2) in Figure 2(a). The property of the topological levels leads to a symmetric behavior around for the oscillator strength. The results in Figure 4(a) show a zero value for the oscillator strength at . As shown in the inset of Figure 4(a) the wavespinors for the first state and the second one at are related as and which results / <ψ†/ x /ψ > /2 = 0 in Eq. (5). Panel 4(b) presents the oscillator strength as function of magnetic field for several values of . The presence of an external magnetic field decreases the oscillator strength at large momentum whereas the B0 = 0 result exhibits an increase in the oscillator strength (blue dashed curve in (a)). The reason is that a large magnetic field together with a large momentum weakly affects the topological states of the single kink profile (see Figure 3(b)). Note that the oscillator strength vs magnetic field is zero for (dotted line in panel (b)).

Bottom Line: We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene.These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil. pereira@fisica.ufc.br.

ABSTRACT
We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

No MeSH data available.