Limits...
Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field.

Zarenia M, Pereira JM, Peeters FM, de Aquino Farias G - Nanoscale Res Lett (2011)

Bottom Line: We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene.These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil. pereira@fisica.ufc.br.

ABSTRACT
We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

No MeSH data available.


Related in: MedlinePlus

Energy levels for a single kink profile on bilayer graphene in the absence of magnetic field with ub = 0.25 and δ = 1. The right panels show the wave spinors and probability density corresponding to the states that are indicated by arrows in panel (a).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211872&req=5

Figure 2: Energy levels for a single kink profile on bilayer graphene in the absence of magnetic field with ub = 0.25 and δ = 1. The right panels show the wave spinors and probability density corresponding to the states that are indicated by arrows in panel (a).

Mentions: Figure 2(a) shows the spectrum for a potential kink as function of the wavevector along the kink for zero magnetic field. In this case, the potential kink is sharp, i.e. δ = 1 in Eq. (4). It is seen that the solutions of Eq. (3) for B0 = 0 are related by the transformations ϕa → - ϕb, ϕb → ϕa, ky → - ky and ε → -ε. The shaded region corresponds to the continuum of free states. The dashed horizontal lines correspond to ε = ±ub and ε = 0, with ub = 0.25. These results are found in the vicinity of a single valley (K) and show the unidirectional character of the propagation, in which only states with positive group velocity are obtained. Notice that the spectrum has the property . For localized states around the K' valley, we have EK' (ky) = - EK (ky). Panels (b) and (c) of Figure 2 present the spinor components and the probability density for the states indicated by the arrows in panel (a), corresponding to (b) and (c). These electron states are localized at the potential kink.


Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field.

Zarenia M, Pereira JM, Peeters FM, de Aquino Farias G - Nanoscale Res Lett (2011)

Energy levels for a single kink profile on bilayer graphene in the absence of magnetic field with ub = 0.25 and δ = 1. The right panels show the wave spinors and probability density corresponding to the states that are indicated by arrows in panel (a).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211872&req=5

Figure 2: Energy levels for a single kink profile on bilayer graphene in the absence of magnetic field with ub = 0.25 and δ = 1. The right panels show the wave spinors and probability density corresponding to the states that are indicated by arrows in panel (a).
Mentions: Figure 2(a) shows the spectrum for a potential kink as function of the wavevector along the kink for zero magnetic field. In this case, the potential kink is sharp, i.e. δ = 1 in Eq. (4). It is seen that the solutions of Eq. (3) for B0 = 0 are related by the transformations ϕa → - ϕb, ϕb → ϕa, ky → - ky and ε → -ε. The shaded region corresponds to the continuum of free states. The dashed horizontal lines correspond to ε = ±ub and ε = 0, with ub = 0.25. These results are found in the vicinity of a single valley (K) and show the unidirectional character of the propagation, in which only states with positive group velocity are obtained. Notice that the spectrum has the property . For localized states around the K' valley, we have EK' (ky) = - EK (ky). Panels (b) and (c) of Figure 2 present the spinor components and the probability density for the states indicated by the arrows in panel (a), corresponding to (b) and (c). These electron states are localized at the potential kink.

Bottom Line: We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene.These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil. pereira@fisica.ufc.br.

ABSTRACT
We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw.

No MeSH data available.


Related in: MedlinePlus