Limits...
Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity.

Zhang Y, Wu H, Huang X, Zhang J, Guo S - Nanoscale Res Lett (2011)

Bottom Line: The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system.The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay.Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, PR China. haixiawu@sjtu.edu.cn.

ABSTRACT
In this study, zinc oxide (ZnO) nanocrystals with different morphologies were synthesized and used as substrates for enzyme immobilization. The effects of morphology of ZnO nanocrystals on enzyme immobilization and their catalytic activities were investigated. The ZnO nanocrystals were prepared through a hydrothermal procedure using tetramethylammonium hydroxide as a mineralizing agent. The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system. The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay. Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker. The results showed that three-dimensional nanomultipod is more appropriate for the immobilization of enzyme used further in catalytic reaction.

No MeSH data available.


Related in: MedlinePlus

SEM images of ZnO nanocryatals. (a) Nanospheres, (b) nanodisks, and (c) nanomultipods prepared using mixtures of methanol and water with different volume ratios of 10:0, 1:1 and 1:9 as solvents, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211870&req=5

Figure 1: SEM images of ZnO nanocryatals. (a) Nanospheres, (b) nanodisks, and (c) nanomultipods prepared using mixtures of methanol and water with different volume ratios of 10:0, 1:1 and 1:9 as solvents, respectively.

Mentions: Figure 1 shows the SEM images of ZnO nanocrystals with different morphologies. The nanospheres, with diameter of approximately 30 nm, were obtained when pure methanol was used as the hydrothermal reaction solvent as shown in Figure 1a. When the ratio of methanol to water was adjusted to 1:1, ZnO nanodiscs, approximately 85 nm in width and 25 nm in thickness, were acquired as shown in Figure 1b. Figure 1c shows the ZnO nanomultipods composed of several rods of 100 nm in diameter and 200 nm in length when the methanol/water ratio reaches 1:9. This illustrates that the ratio of methanol/water is certainly a crucial factor to control on the morphology of ZnO nanocrystals. Although the morphologies of aforementioned ZnO nanocrystals are different, the XRD patterns are all well consistent with the standard wurtzite ZnO structure as shown in Figure 2. Thus, the effect of crystal form on the surface modification and enzyme immobilization can be neglected.


Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity.

Zhang Y, Wu H, Huang X, Zhang J, Guo S - Nanoscale Res Lett (2011)

SEM images of ZnO nanocryatals. (a) Nanospheres, (b) nanodisks, and (c) nanomultipods prepared using mixtures of methanol and water with different volume ratios of 10:0, 1:1 and 1:9 as solvents, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211870&req=5

Figure 1: SEM images of ZnO nanocryatals. (a) Nanospheres, (b) nanodisks, and (c) nanomultipods prepared using mixtures of methanol and water with different volume ratios of 10:0, 1:1 and 1:9 as solvents, respectively.
Mentions: Figure 1 shows the SEM images of ZnO nanocrystals with different morphologies. The nanospheres, with diameter of approximately 30 nm, were obtained when pure methanol was used as the hydrothermal reaction solvent as shown in Figure 1a. When the ratio of methanol to water was adjusted to 1:1, ZnO nanodiscs, approximately 85 nm in width and 25 nm in thickness, were acquired as shown in Figure 1b. Figure 1c shows the ZnO nanomultipods composed of several rods of 100 nm in diameter and 200 nm in length when the methanol/water ratio reaches 1:9. This illustrates that the ratio of methanol/water is certainly a crucial factor to control on the morphology of ZnO nanocrystals. Although the morphologies of aforementioned ZnO nanocrystals are different, the XRD patterns are all well consistent with the standard wurtzite ZnO structure as shown in Figure 2. Thus, the effect of crystal form on the surface modification and enzyme immobilization can be neglected.

Bottom Line: The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system.The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay.Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, PR China. haixiawu@sjtu.edu.cn.

ABSTRACT
In this study, zinc oxide (ZnO) nanocrystals with different morphologies were synthesized and used as substrates for enzyme immobilization. The effects of morphology of ZnO nanocrystals on enzyme immobilization and their catalytic activities were investigated. The ZnO nanocrystals were prepared through a hydrothermal procedure using tetramethylammonium hydroxide as a mineralizing agent. The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system. The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay. Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker. The results showed that three-dimensional nanomultipod is more appropriate for the immobilization of enzyme used further in catalytic reaction.

No MeSH data available.


Related in: MedlinePlus