Limits...
PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells.

Liang GF, Zhu YL, Sun B, Hu FH, Tian T, Li SC, Xiao ZD - Nanoscale Res Lett (2011)

Bottom Line: The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes.Moreover, nanocomplex shows better serum compatibility than commercial liposome.Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. zdxiao@seu.edu.

ABSTRACT
The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

No MeSH data available.


Related in: MedlinePlus

Viability of HepG2 cells 48 h posttreatment with one of above transfection reagents. Values are the mean average ± SD of 3 wells applied with the same reagents.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211866&req=5

Figure 4: Viability of HepG2 cells 48 h posttreatment with one of above transfection reagents. Values are the mean average ± SD of 3 wells applied with the same reagents.

Mentions: MTT assay has been widely used for cell proliferation and biochemical toxicity testing. In this study, MTT assay was used to investigate the cytotoxicity of nanoparticles/pDNA complexes on HepG2 cells. Figure 4 showed that the cytotoxicity of PLGA/PEI (N/P 6) nanoparticles is remarkably lower on HepG2 cells, compared with the pure PEI, and close to commercial liposome. Indeed, PLGA/PEI/pDNA showed above 90% cell viability at N/P 6. By contrast, cell viability dropped down about 54% and 86% in the presence of PEI and liposome, respectively; there is little effect on cell viability observed with or without DNA, and this confirmed that High Molecular Weight (HMW) PEI aggregates on the cell surface, inducing lysosomal breakdown and mitochondrial damage, thereby affecting cell viability [30]. Nanoparticles of PLGA as core, coated with PEI, presented in this study, effectively improve the stability of nanocomposites and avoid the release of toxic free PEI in the cells after delivery of the miRNA vector.


PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells.

Liang GF, Zhu YL, Sun B, Hu FH, Tian T, Li SC, Xiao ZD - Nanoscale Res Lett (2011)

Viability of HepG2 cells 48 h posttreatment with one of above transfection reagents. Values are the mean average ± SD of 3 wells applied with the same reagents.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211866&req=5

Figure 4: Viability of HepG2 cells 48 h posttreatment with one of above transfection reagents. Values are the mean average ± SD of 3 wells applied with the same reagents.
Mentions: MTT assay has been widely used for cell proliferation and biochemical toxicity testing. In this study, MTT assay was used to investigate the cytotoxicity of nanoparticles/pDNA complexes on HepG2 cells. Figure 4 showed that the cytotoxicity of PLGA/PEI (N/P 6) nanoparticles is remarkably lower on HepG2 cells, compared with the pure PEI, and close to commercial liposome. Indeed, PLGA/PEI/pDNA showed above 90% cell viability at N/P 6. By contrast, cell viability dropped down about 54% and 86% in the presence of PEI and liposome, respectively; there is little effect on cell viability observed with or without DNA, and this confirmed that High Molecular Weight (HMW) PEI aggregates on the cell surface, inducing lysosomal breakdown and mitochondrial damage, thereby affecting cell viability [30]. Nanoparticles of PLGA as core, coated with PEI, presented in this study, effectively improve the stability of nanocomposites and avoid the release of toxic free PEI in the cells after delivery of the miRNA vector.

Bottom Line: The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes.Moreover, nanocomplex shows better serum compatibility than commercial liposome.Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. zdxiao@seu.edu.

ABSTRACT
The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

No MeSH data available.


Related in: MedlinePlus