Limits...
A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells.

Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J - Nanoscale Res Lett (2011)

Bottom Line: An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated.The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs.Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Lab Polymer Composite & Funct Mat, Key Lab Designed Synth & Applicat Polymer Mat, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. lzdai@xmu.edu.cn.

ABSTRACT
An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated. A facile procedure is demonstrated for controlling the morphology and thickness of PPy film by adding ethanol in the reaction system and a possible mechanism of the coating formation process is proposed. The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs. Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites. The method may provide a facile strategy for tailoring the polymer coating on carbon nanotubes (CNTs) for carbon-based device applications.

No MeSH data available.


Comparison of XRD spectra of (a) MWCNTs, PPy/MWCNT composites with various PPy thickness (nm): (b) 6; (c) 15; (d) 28, and (e) PPy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211849&req=5

Figure 6: Comparison of XRD spectra of (a) MWCNTs, PPy/MWCNT composites with various PPy thickness (nm): (b) 6; (c) 15; (d) 28, and (e) PPy.

Mentions: A comparison of the X-ray diffraction [XRD] spectra of different molar mixtures of PPy/MWCNT, MWCNTs and PPy composites are shown in Figure 6. The X-ray pattern of the MWCNT displays the presence of two peaks at 25.80° (3.47 Å) and 42.75° (2.12 Å) assigned to (002) and (100) diffractions corresponding to the interlayer spacing (0.34 nm) of the nanotube and reflection of the carbon atoms, respectively, in good agreement with that of the previous literature [37]. For pure PPy, a broad diffraction peak at 25.4° is due to the pyrrole intermolecular spacing [36]. For the different molar mixtures of PPy/MWCNT, the XRD spectra show both the PPy broad peak (at 25.4º) and the strong MWCNTs peaks (at 25.80° and 42.75º) [21,22]. It is found that the intensity of MWCNTs diffraction peaks decreases with increasing the mass ratio of pyrrole to MWCNTs but is still stronger than the PPy peaks when the mass ratio of pyrrole to MWCNT reaches 6:4.


A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells.

Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J - Nanoscale Res Lett (2011)

Comparison of XRD spectra of (a) MWCNTs, PPy/MWCNT composites with various PPy thickness (nm): (b) 6; (c) 15; (d) 28, and (e) PPy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211849&req=5

Figure 6: Comparison of XRD spectra of (a) MWCNTs, PPy/MWCNT composites with various PPy thickness (nm): (b) 6; (c) 15; (d) 28, and (e) PPy.
Mentions: A comparison of the X-ray diffraction [XRD] spectra of different molar mixtures of PPy/MWCNT, MWCNTs and PPy composites are shown in Figure 6. The X-ray pattern of the MWCNT displays the presence of two peaks at 25.80° (3.47 Å) and 42.75° (2.12 Å) assigned to (002) and (100) diffractions corresponding to the interlayer spacing (0.34 nm) of the nanotube and reflection of the carbon atoms, respectively, in good agreement with that of the previous literature [37]. For pure PPy, a broad diffraction peak at 25.4° is due to the pyrrole intermolecular spacing [36]. For the different molar mixtures of PPy/MWCNT, the XRD spectra show both the PPy broad peak (at 25.4º) and the strong MWCNTs peaks (at 25.80° and 42.75º) [21,22]. It is found that the intensity of MWCNTs diffraction peaks decreases with increasing the mass ratio of pyrrole to MWCNTs but is still stronger than the PPy peaks when the mass ratio of pyrrole to MWCNT reaches 6:4.

Bottom Line: An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated.The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs.Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Lab Polymer Composite & Funct Mat, Key Lab Designed Synth & Applicat Polymer Mat, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. lzdai@xmu.edu.cn.

ABSTRACT
An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated. A facile procedure is demonstrated for controlling the morphology and thickness of PPy film by adding ethanol in the reaction system and a possible mechanism of the coating formation process is proposed. The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs. Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites. The method may provide a facile strategy for tailoring the polymer coating on carbon nanotubes (CNTs) for carbon-based device applications.

No MeSH data available.