Limits...
A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells.

Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J - Nanoscale Res Lett (2011)

Bottom Line: An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated.The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs.Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Lab Polymer Composite & Funct Mat, Key Lab Designed Synth & Applicat Polymer Mat, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. lzdai@xmu.edu.cn.

ABSTRACT
An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated. A facile procedure is demonstrated for controlling the morphology and thickness of PPy film by adding ethanol in the reaction system and a possible mechanism of the coating formation process is proposed. The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs. Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites. The method may provide a facile strategy for tailoring the polymer coating on carbon nanotubes (CNTs) for carbon-based device applications.

No MeSH data available.


Room-temperature Raman spectra of (a) pristine MWCNT and (b) PPy/MWCNT composite. The inset curve is the Raman spectrum of pure PPy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211849&req=5

Figure 4: Room-temperature Raman spectra of (a) pristine MWCNT and (b) PPy/MWCNT composite. The inset curve is the Raman spectrum of pure PPy.

Mentions: Raman spectroscopy has also been used to investigate the surface and interfacial properties of PPy/carbon nanotubes composites [30]. From the room temperature Raman spectra of (a) MWCNT and (b) PPy/MWCNT (2:8) composites (Figure 4), we can see that the typical peak of pristine MWCNT (Figure. 4a) at 1,591 cm-1 (G-band) is attributed to E2 g mode of graphite wall. The band at 1,334 cm-1 (D-band) is assigned to slightly disordered graphite [30]. Clearly, after the shell coating forms on MWCNTs surface, four additional Raman peaks (appeard at around 932, 989, 1,048, and 1,413 cm−1, respectively) are found. From the Raman spectra of pure PPy (inset curve in Figure 4), the bands at approximately 932 and 989 cm−1 are assigned to the ring deformation associated with the di-cation (di-polaron) and radical cation (polaron), respectively [31]. The band at approximately 1,413 cm−1 can be attributed to the C-N stretching mode and the peak at around 1,048 cm−1 to the C-H in plane deformation [32]. The G-band and D-band of MWCNT clearly change with PPy coating, demonstrating the interfacial interactions between the MWCNT and PPy [31]. Interestingly, polaron mode shifted from in 1,048 cm-1 of pure PPy to 1,051 cm-1 of PPy/MWNT array and the peak intensity increases compared with that of the peak at 989 cm−1, and the high frequency C-H in-plane deformation mode at 1051 cm-1 is correlated with the high electric conductivity of PPy [32,33]. It is therefore believed that in our case the highly conductive PPy/MWCNT composites can be achieved because the enhanced interaction between PPy and the MWCNTs surface will be favorable to anchoring the PPy backbone onto the MWNTs surface [34].


A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells.

Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J - Nanoscale Res Lett (2011)

Room-temperature Raman spectra of (a) pristine MWCNT and (b) PPy/MWCNT composite. The inset curve is the Raman spectrum of pure PPy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211849&req=5

Figure 4: Room-temperature Raman spectra of (a) pristine MWCNT and (b) PPy/MWCNT composite. The inset curve is the Raman spectrum of pure PPy.
Mentions: Raman spectroscopy has also been used to investigate the surface and interfacial properties of PPy/carbon nanotubes composites [30]. From the room temperature Raman spectra of (a) MWCNT and (b) PPy/MWCNT (2:8) composites (Figure 4), we can see that the typical peak of pristine MWCNT (Figure. 4a) at 1,591 cm-1 (G-band) is attributed to E2 g mode of graphite wall. The band at 1,334 cm-1 (D-band) is assigned to slightly disordered graphite [30]. Clearly, after the shell coating forms on MWCNTs surface, four additional Raman peaks (appeard at around 932, 989, 1,048, and 1,413 cm−1, respectively) are found. From the Raman spectra of pure PPy (inset curve in Figure 4), the bands at approximately 932 and 989 cm−1 are assigned to the ring deformation associated with the di-cation (di-polaron) and radical cation (polaron), respectively [31]. The band at approximately 1,413 cm−1 can be attributed to the C-N stretching mode and the peak at around 1,048 cm−1 to the C-H in plane deformation [32]. The G-band and D-band of MWCNT clearly change with PPy coating, demonstrating the interfacial interactions between the MWCNT and PPy [31]. Interestingly, polaron mode shifted from in 1,048 cm-1 of pure PPy to 1,051 cm-1 of PPy/MWNT array and the peak intensity increases compared with that of the peak at 989 cm−1, and the high frequency C-H in-plane deformation mode at 1051 cm-1 is correlated with the high electric conductivity of PPy [32,33]. It is therefore believed that in our case the highly conductive PPy/MWCNT composites can be achieved because the enhanced interaction between PPy and the MWCNTs surface will be favorable to anchoring the PPy backbone onto the MWNTs surface [34].

Bottom Line: An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated.The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs.Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites.

View Article: PubMed Central - HTML - PubMed

Affiliation: Key Lab Polymer Composite & Funct Mat, Key Lab Designed Synth & Applicat Polymer Mat, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. lzdai@xmu.edu.cn.

ABSTRACT
An improved approach to assemble ultrathin and thickness-tunable polypyrrole (PPy) films onto multiwall carbon nanotubes (MWCNTs) has been investigated. A facile procedure is demonstrated for controlling the morphology and thickness of PPy film by adding ethanol in the reaction system and a possible mechanism of the coating formation process is proposed. The coated PPy films can be easily tuned by adding ethanol and adjusting a mass ratio of pyrrole to MWCNTs. Moreover, the thickness of PPy significantly influences the electronic conductivity and capacitive behavior of the PPy/MWCNT composites. The method may provide a facile strategy for tailoring the polymer coating on carbon nanotubes (CNTs) for carbon-based device applications.

No MeSH data available.