Limits...
The Investigation of Intermediate Stage of Template Etching with Metal Droplets by Wetting Angle Analysis on (001) GaAs Surface

View Article: PubMed Central - HTML - PubMed

ABSTRACT

In this work, we study metal droplets on a semiconductor surface that are the initial stage for both droplet epitaxy and local droplet etching. The distributions of droplet geometrical parameters such as height, radius and volume help to understand the droplet formation that strongly influences subsequent nanohole etching. To investigate the etching and intermixing processes, we offer a new method of wetting angle analysis. The aspect ratio that is defined as the ratio of the height to radius was used as an estimation of wetting angle which depends on the droplet material. The investigation of the wetting angle and the estimation of indium content revealed significant materials intermixing during the deposition time. AFM measurements reveal the presence of two droplet groups that is in agreement with nanohole investigations. To explain this observation, we consider arsenic evaporation and consequent change in the initial substrate. On the basis of our analysis, we suggest the model of droplet evolution and the formation of two droplet groups.

No MeSH data available.


The histograms of indium droplet geometrical parameter distributions. The histograms a and b relate to the sample fabricated with the deposition rate FIn = 0.04 Ml/s. The histograms c and d stand for FIn = 0.16 Ml/s. The decompositions into Gaussians are shown, and the values of the peak centers are presented in the insets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211836&req=5

Figure 2: The histograms of indium droplet geometrical parameter distributions. The histograms a and b relate to the sample fabricated with the deposition rate FIn = 0.04 Ml/s. The histograms c and d stand for FIn = 0.16 Ml/s. The decompositions into Gaussians are shown, and the values of the peak centers are presented in the insets.

Mentions: To study the properties of the droplets, the histograms of the major parameter distributions such as droplet height and radius were plotted. Figure 2 shows the experimental data for the samples with indium droplets.


The Investigation of Intermediate Stage of Template Etching with Metal Droplets by Wetting Angle Analysis on (001) GaAs Surface
The histograms of indium droplet geometrical parameter distributions. The histograms a and b relate to the sample fabricated with the deposition rate FIn = 0.04 Ml/s. The histograms c and d stand for FIn = 0.16 Ml/s. The decompositions into Gaussians are shown, and the values of the peak centers are presented in the insets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211836&req=5

Figure 2: The histograms of indium droplet geometrical parameter distributions. The histograms a and b relate to the sample fabricated with the deposition rate FIn = 0.04 Ml/s. The histograms c and d stand for FIn = 0.16 Ml/s. The decompositions into Gaussians are shown, and the values of the peak centers are presented in the insets.
Mentions: To study the properties of the droplets, the histograms of the major parameter distributions such as droplet height and radius were plotted. Figure 2 shows the experimental data for the samples with indium droplets.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

In this work, we study metal droplets on a semiconductor surface that are the initial stage for both droplet epitaxy and local droplet etching. The distributions of droplet geometrical parameters such as height, radius and volume help to understand the droplet formation that strongly influences subsequent nanohole etching. To investigate the etching and intermixing processes, we offer a new method of wetting angle analysis. The aspect ratio that is defined as the ratio of the height to radius was used as an estimation of wetting angle which depends on the droplet material. The investigation of the wetting angle and the estimation of indium content revealed significant materials intermixing during the deposition time. AFM measurements reveal the presence of two droplet groups that is in agreement with nanohole investigations. To explain this observation, we consider arsenic evaporation and consequent change in the initial substrate. On the basis of our analysis, we suggest the model of droplet evolution and the formation of two droplet groups.

No MeSH data available.