Limits...
CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation.

Zhang G, Shi L, Selke M, Wang X - Nanoscale Res Lett (2011)

Bottom Line: Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells.We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells.Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Lab of Bioelectronics (Chien-Shiung Wu Lab), Department of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, PR China. xuewang@seu.edu.cn.

ABSTRACT
Cadmium telluride quantum dots (Cdte QDs) have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR) on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

No MeSH data available.


Related in: MedlinePlus

Inhibition of tumor growth in HepG2/ADM nude mice with different treatments. (A) The different treatment effects on the tumor growth inhibition in nude mice inoculated with HepG2/ADM cells: group 1, no treatment, served as a control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR. (B) Quantitative analysis of apoptotic cells using TUNEL staining after various treatments. HepG2/ADM xenograft tumors treated as follows: group 1, control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211514&req=5

Figure 7: Inhibition of tumor growth in HepG2/ADM nude mice with different treatments. (A) The different treatment effects on the tumor growth inhibition in nude mice inoculated with HepG2/ADM cells: group 1, no treatment, served as a control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR. (B) Quantitative analysis of apoptotic cells using TUNEL staining after various treatments. HepG2/ADM xenograft tumors treated as follows: group 1, control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR.

Mentions: The nude mice were inoculated with HepG2/ADM cells and the subsequent tumor growth was recorded after various treatments. From Figure 7A, the HepG2/ADM nude mice, the tumor volume of the control group was enlarged to almost 4970 mm3 (Figure 7A, group 1). Treatment with DNR or Cdte QDs alone has mild inhibitory effect on the tumor growth in the HepG2/ADM mice due to multidrug resistance of the HepG2/ADM cell system (groups 2 and 3, respectively). In the group treated with Cdte QDs + DNR (group 4), tumor growth was significantly inhibited.


CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation.

Zhang G, Shi L, Selke M, Wang X - Nanoscale Res Lett (2011)

Inhibition of tumor growth in HepG2/ADM nude mice with different treatments. (A) The different treatment effects on the tumor growth inhibition in nude mice inoculated with HepG2/ADM cells: group 1, no treatment, served as a control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR. (B) Quantitative analysis of apoptotic cells using TUNEL staining after various treatments. HepG2/ADM xenograft tumors treated as follows: group 1, control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211514&req=5

Figure 7: Inhibition of tumor growth in HepG2/ADM nude mice with different treatments. (A) The different treatment effects on the tumor growth inhibition in nude mice inoculated with HepG2/ADM cells: group 1, no treatment, served as a control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR. (B) Quantitative analysis of apoptotic cells using TUNEL staining after various treatments. HepG2/ADM xenograft tumors treated as follows: group 1, control group; group 2, 4 × 10-6 mol/kg DNR; group 3, 4 μmol/kg Cdte QDs; and group 4, 4 μmol/kg Cdte QDs with 4 × 10-6 mol/kg DNR.
Mentions: The nude mice were inoculated with HepG2/ADM cells and the subsequent tumor growth was recorded after various treatments. From Figure 7A, the HepG2/ADM nude mice, the tumor volume of the control group was enlarged to almost 4970 mm3 (Figure 7A, group 1). Treatment with DNR or Cdte QDs alone has mild inhibitory effect on the tumor growth in the HepG2/ADM mice due to multidrug resistance of the HepG2/ADM cell system (groups 2 and 3, respectively). In the group treated with Cdte QDs + DNR (group 4), tumor growth was significantly inhibited.

Bottom Line: Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells.We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells.Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Lab of Bioelectronics (Chien-Shiung Wu Lab), Department of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, PR China. xuewang@seu.edu.cn.

ABSTRACT
Cadmium telluride quantum dots (Cdte QDs) have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR) on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

No MeSH data available.


Related in: MedlinePlus