Limits...
Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view.

Chinga-Carrasco G - Nanoscale Res Lett (2011)

Bottom Line: It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres.This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure.However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

View Article: PubMed Central - HTML - PubMed

Affiliation: Paper and Fibre Research Institute (PFI AS), Høgskolerringen 6b, 7491 Trondheim, Norway. gary.chinga.carrasco@pfi.no.

ABSTRACT
During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

No MeSH data available.


Microfibril of Pinus radiata. Image acquired with TEM. The black arrow indicates the boundaries of a microfibril, which is approximately 28 nm in diameter. The white arrows indicate a single elementary fibril, which is 3.5 nm in diameter. See also Chinga-Carrasco et al. [16].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211513&req=5

Figure 2: Microfibril of Pinus radiata. Image acquired with TEM. The black arrow indicates the boundaries of a microfibril, which is approximately 28 nm in diameter. The white arrows indicate a single elementary fibril, which is 3.5 nm in diameter. See also Chinga-Carrasco et al. [16].

Mentions: According to Meier [13], the cellulosic components of a wood fibre wall structure are the cellulose molecule, the elementary fibril, the microfibril, the macrofibril and the lamellar membrane. In the work of Maier [13], the term "elementary fibril" was reported to have a diameter of 3.5 nm and was applied following the terminology of Frey-Wyssling [14]. Heyn [12] stated that elementary fibrils are universal structural units of natural cellulose, as the same biological structure had been encountered in cotton, ramie, jute and wood fibres. Blackwell and Kolpak [15] reported also the occurrence of elementary fibrils with diameters of approximately 3.5 nm in cotton and bacterial cellulose, thus giving supportive evidence about the basic fibrillar unit in cellulose microfibrils, see also [16]. According to Meier [13], microfibrils are agglomerates of elementary fibrils and always have diameters which are multiples of 3.5 nm (Figures 1c and 2). The bundling of elementary fibrils into microfibrils is caused by purely physically conditioned coalescence as a mechanism of reducing the free energy of the surfaces [17]. The maximum diameter of a microfibril was proposed to be 35 nm [13]. Clearly, there has been a debate during the 1950 to 1960s about the terminology applied for describing the elementary components of a plant cell wall. Ohad and Danon [18] applied the microfibril term to the basic plant cell wall structures having a diameter of 3.5 nm, i.e. the elementary fibrils [12,14,19,20]. The microfibril structures reported by Frey-Wyssling [14] were defined as "composite fibres" by Ohad and Danon [18].


Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view.

Chinga-Carrasco G - Nanoscale Res Lett (2011)

Microfibril of Pinus radiata. Image acquired with TEM. The black arrow indicates the boundaries of a microfibril, which is approximately 28 nm in diameter. The white arrows indicate a single elementary fibril, which is 3.5 nm in diameter. See also Chinga-Carrasco et al. [16].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211513&req=5

Figure 2: Microfibril of Pinus radiata. Image acquired with TEM. The black arrow indicates the boundaries of a microfibril, which is approximately 28 nm in diameter. The white arrows indicate a single elementary fibril, which is 3.5 nm in diameter. See also Chinga-Carrasco et al. [16].
Mentions: According to Meier [13], the cellulosic components of a wood fibre wall structure are the cellulose molecule, the elementary fibril, the microfibril, the macrofibril and the lamellar membrane. In the work of Maier [13], the term "elementary fibril" was reported to have a diameter of 3.5 nm and was applied following the terminology of Frey-Wyssling [14]. Heyn [12] stated that elementary fibrils are universal structural units of natural cellulose, as the same biological structure had been encountered in cotton, ramie, jute and wood fibres. Blackwell and Kolpak [15] reported also the occurrence of elementary fibrils with diameters of approximately 3.5 nm in cotton and bacterial cellulose, thus giving supportive evidence about the basic fibrillar unit in cellulose microfibrils, see also [16]. According to Meier [13], microfibrils are agglomerates of elementary fibrils and always have diameters which are multiples of 3.5 nm (Figures 1c and 2). The bundling of elementary fibrils into microfibrils is caused by purely physically conditioned coalescence as a mechanism of reducing the free energy of the surfaces [17]. The maximum diameter of a microfibril was proposed to be 35 nm [13]. Clearly, there has been a debate during the 1950 to 1960s about the terminology applied for describing the elementary components of a plant cell wall. Ohad and Danon [18] applied the microfibril term to the basic plant cell wall structures having a diameter of 3.5 nm, i.e. the elementary fibrils [12,14,19,20]. The microfibril structures reported by Frey-Wyssling [14] were defined as "composite fibres" by Ohad and Danon [18].

Bottom Line: It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres.This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure.However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

View Article: PubMed Central - HTML - PubMed

Affiliation: Paper and Fibre Research Institute (PFI AS), Høgskolerringen 6b, 7491 Trondheim, Norway. gary.chinga.carrasco@pfi.no.

ABSTRACT
During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

No MeSH data available.