Limits...
Porous anodic alumina on galvanically grown PtSi layer for application in template-assisted Si nanowire growth.

Michelakaki I, Nassiopoulou AG, Stavrinidou E, Breza K, Frangis N - Nanoscale Res Lett (2011)

Bottom Line: We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate.The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer.The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM).

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, Aghia Paraskevi, 153 10, Athens, Greece. A.Nassiopoulou@imel.demokritos.gr.

ABSTRACT
We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate. The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer. The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM). Cross sectional HRTEM images combined with electron diffraction (ED) were used to characterize the different interfaces between Si, PtSi and porous anodic alumina.

No MeSH data available.


Related in: MedlinePlus

Cross sectional bright field images of sample S-30min with a PAA film on top. In panel  (a) the morphology of the interface with the Si substrate  is shown, depicting the presence of large nanograins between the PAA film and Si (attributed to Pt nanograins and illustrated in higher magnification in the inset of panel (a)). On top of these nanograins the alumina barrier layer usually observed at each pore bottom at the interface of PAA films with Si (in the absence of Pt in-between) is missing. Panel (b) shows another part of the sample cross section which illustrates that occasionally a continuous film of crystalline Pt   exists between the PAA film and the Si substrate. The white area on the right depicts either amorphous parts of this film or Pt crystals with different orientation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211510&req=5

Figure 7: Cross sectional bright field images of sample S-30min with a PAA film on top. In panel (a) the morphology of the interface with the Si substrate is shown, depicting the presence of large nanograins between the PAA film and Si (attributed to Pt nanograins and illustrated in higher magnification in the inset of panel (a)). On top of these nanograins the alumina barrier layer usually observed at each pore bottom at the interface of PAA films with Si (in the absence of Pt in-between) is missing. Panel (b) shows another part of the sample cross section which illustrates that occasionally a continuous film of crystalline Pt exists between the PAA film and the Si substrate. The white area on the right depicts either amorphous parts of this film or Pt crystals with different orientation.

Mentions: The corresponding results are shown in Figure 7. At the interface of Pt with Si large nanograins are depicted, as those identified on the surface of sample S-30 min (see panel a). The barrier layer usually observed at each pore bottom is absent above the nanograin and the pores seem to reach directly the grain surface. This explains the appearance of the high leakage current in the anodization curve, which can be attributed to a direct current flow from the electrolyte to the Si surface through the nanograin. The existence of the grains prevents the homogeneous oxidation of the Si surface through the pores at the Al2O3/Si interface.


Porous anodic alumina on galvanically grown PtSi layer for application in template-assisted Si nanowire growth.

Michelakaki I, Nassiopoulou AG, Stavrinidou E, Breza K, Frangis N - Nanoscale Res Lett (2011)

Cross sectional bright field images of sample S-30min with a PAA film on top. In panel  (a) the morphology of the interface with the Si substrate  is shown, depicting the presence of large nanograins between the PAA film and Si (attributed to Pt nanograins and illustrated in higher magnification in the inset of panel (a)). On top of these nanograins the alumina barrier layer usually observed at each pore bottom at the interface of PAA films with Si (in the absence of Pt in-between) is missing. Panel (b) shows another part of the sample cross section which illustrates that occasionally a continuous film of crystalline Pt   exists between the PAA film and the Si substrate. The white area on the right depicts either amorphous parts of this film or Pt crystals with different orientation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211510&req=5

Figure 7: Cross sectional bright field images of sample S-30min with a PAA film on top. In panel (a) the morphology of the interface with the Si substrate is shown, depicting the presence of large nanograins between the PAA film and Si (attributed to Pt nanograins and illustrated in higher magnification in the inset of panel (a)). On top of these nanograins the alumina barrier layer usually observed at each pore bottom at the interface of PAA films with Si (in the absence of Pt in-between) is missing. Panel (b) shows another part of the sample cross section which illustrates that occasionally a continuous film of crystalline Pt exists between the PAA film and the Si substrate. The white area on the right depicts either amorphous parts of this film or Pt crystals with different orientation.
Mentions: The corresponding results are shown in Figure 7. At the interface of Pt with Si large nanograins are depicted, as those identified on the surface of sample S-30 min (see panel a). The barrier layer usually observed at each pore bottom is absent above the nanograin and the pores seem to reach directly the grain surface. This explains the appearance of the high leakage current in the anodization curve, which can be attributed to a direct current flow from the electrolyte to the Si surface through the nanograin. The existence of the grains prevents the homogeneous oxidation of the Si surface through the pores at the Al2O3/Si interface.

Bottom Line: We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate.The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer.The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM).

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, Aghia Paraskevi, 153 10, Athens, Greece. A.Nassiopoulou@imel.demokritos.gr.

ABSTRACT
We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate. The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer. The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM). Cross sectional HRTEM images combined with electron diffraction (ED) were used to characterize the different interfaces between Si, PtSi and porous anodic alumina.

No MeSH data available.


Related in: MedlinePlus