Limits...
Porous anodic alumina on galvanically grown PtSi layer for application in template-assisted Si nanowire growth.

Michelakaki I, Nassiopoulou AG, Stavrinidou E, Breza K, Frangis N - Nanoscale Res Lett (2011)

Bottom Line: We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate.The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer.The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM).

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, Aghia Paraskevi, 153 10, Athens, Greece. A.Nassiopoulou@imel.demokritos.gr.

ABSTRACT
We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate. The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer. The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM). Cross sectional HRTEM images combined with electron diffraction (ED) were used to characterize the different interfaces between Si, PtSi and porous anodic alumina.

No MeSH data available.


Related in: MedlinePlus

Cross-sectional bright-field TEM images (panels (a), (b)) and the corresponding electron diffraction pattern (panel (c)) (sample PAA/S-15 min/Si). In this sample the anodization was stopped before the abrupt current increase in the anodization current. In panel (a), we reveal an amorphous layer (indicated by 2) on the Si substrate (indicated by 1). On top of this thin amorphous layer, there is another layer (layer 3) in which we identify different round-shaped multi-phase clusters of Pt-Al-Si (indicated by b) and Al nanocrystals (indicated by a). In panel (b), the pores of the PAA film are shown in larger magnification, while the inset illustrates the barrier layer at the bottom of the pores. The electron diffraction pattern of panel (c) reveals that some of the Al nanocrystals are in very good epitaxial relationship with the Si substrate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211510&req=5

Figure 6: Cross-sectional bright-field TEM images (panels (a), (b)) and the corresponding electron diffraction pattern (panel (c)) (sample PAA/S-15 min/Si). In this sample the anodization was stopped before the abrupt current increase in the anodization current. In panel (a), we reveal an amorphous layer (indicated by 2) on the Si substrate (indicated by 1). On top of this thin amorphous layer, there is another layer (layer 3) in which we identify different round-shaped multi-phase clusters of Pt-Al-Si (indicated by b) and Al nanocrystals (indicated by a). In panel (b), the pores of the PAA film are shown in larger magnification, while the inset illustrates the barrier layer at the bottom of the pores. The electron diffraction pattern of panel (c) reveals that some of the Al nanocrystals are in very good epitaxial relationship with the Si substrate.

Mentions: The corresponding results are shown in Figure 6. In (a) and (b) we see the cross sectional bright field TEM images, while in (c) the corresponding electron diffraction pattern. In panel (a) we reveal the Si substrate (indicated by 1), a very thin amorphous layer (indicated by 2) and another layer on top (indicated by 3). Within this last layer we identify Al nanocrystals (indicated by (a)) and round shape multi-phase clusters, containing different phases of Pt, Al and Si. This means that in this sample the Al film is not fully transformed into Al2O3, but some Al nanocrystals still remain. From the electron diffraction pattern of panel (c) it was revealed that some of the Al nanocrystals are in very good epitaxial relationship with the Si substrate. In panel (b) the pores of the porous anodic alumina (PAA) are shown in larger magnification, while the inset illustrates the barrier layer at the bottom of the pores.


Porous anodic alumina on galvanically grown PtSi layer for application in template-assisted Si nanowire growth.

Michelakaki I, Nassiopoulou AG, Stavrinidou E, Breza K, Frangis N - Nanoscale Res Lett (2011)

Cross-sectional bright-field TEM images (panels (a), (b)) and the corresponding electron diffraction pattern (panel (c)) (sample PAA/S-15 min/Si). In this sample the anodization was stopped before the abrupt current increase in the anodization current. In panel (a), we reveal an amorphous layer (indicated by 2) on the Si substrate (indicated by 1). On top of this thin amorphous layer, there is another layer (layer 3) in which we identify different round-shaped multi-phase clusters of Pt-Al-Si (indicated by b) and Al nanocrystals (indicated by a). In panel (b), the pores of the PAA film are shown in larger magnification, while the inset illustrates the barrier layer at the bottom of the pores. The electron diffraction pattern of panel (c) reveals that some of the Al nanocrystals are in very good epitaxial relationship with the Si substrate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211510&req=5

Figure 6: Cross-sectional bright-field TEM images (panels (a), (b)) and the corresponding electron diffraction pattern (panel (c)) (sample PAA/S-15 min/Si). In this sample the anodization was stopped before the abrupt current increase in the anodization current. In panel (a), we reveal an amorphous layer (indicated by 2) on the Si substrate (indicated by 1). On top of this thin amorphous layer, there is another layer (layer 3) in which we identify different round-shaped multi-phase clusters of Pt-Al-Si (indicated by b) and Al nanocrystals (indicated by a). In panel (b), the pores of the PAA film are shown in larger magnification, while the inset illustrates the barrier layer at the bottom of the pores. The electron diffraction pattern of panel (c) reveals that some of the Al nanocrystals are in very good epitaxial relationship with the Si substrate.
Mentions: The corresponding results are shown in Figure 6. In (a) and (b) we see the cross sectional bright field TEM images, while in (c) the corresponding electron diffraction pattern. In panel (a) we reveal the Si substrate (indicated by 1), a very thin amorphous layer (indicated by 2) and another layer on top (indicated by 3). Within this last layer we identify Al nanocrystals (indicated by (a)) and round shape multi-phase clusters, containing different phases of Pt, Al and Si. This means that in this sample the Al film is not fully transformed into Al2O3, but some Al nanocrystals still remain. From the electron diffraction pattern of panel (c) it was revealed that some of the Al nanocrystals are in very good epitaxial relationship with the Si substrate. In panel (b) the pores of the porous anodic alumina (PAA) are shown in larger magnification, while the inset illustrates the barrier layer at the bottom of the pores.

Bottom Line: We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate.The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer.The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM).

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Microelectronics, NCSR Demokritos, Terma Patriarchou Grigoriou, Aghia Paraskevi, 153 10, Athens, Greece. A.Nassiopoulou@imel.demokritos.gr.

ABSTRACT
We report on the fabrication and morphology/structural characterization of a porous anodic alumina (PAA)/PtSi nano-template for use as matrix in template-assisted Si nanowire growth on a Si substrate. The PtSi layer was formed by electroless deposition from an aqueous solution containing the metal salt and HF, while the PAA membrane by anodizing an Al film deposited on the PtSi layer. The morphology and structure of the PtSi layer and of the alumina membrane on top were studied by Scanning and High Resolution Transmission Electron Microscopies (SEM, HRTEM). Cross sectional HRTEM images combined with electron diffraction (ED) were used to characterize the different interfaces between Si, PtSi and porous anodic alumina.

No MeSH data available.


Related in: MedlinePlus