Limits...
Nano-Floating Gate Memory Devices Composed of ZnO Thin-Film Transistors on Flexible Plastics

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Nano-floating gate memory devices were fabricated on a flexible plastic substrate by a low-temperature fabrication process. The memory characteristics of ZnO-based thin-film transistors with Al nanoparticles embedded in the gate oxides were investigated in this study. Their electron mobility was found to be 0.18 cm2/V·s and their on/off ratio was in the range of 104–105. The threshold voltages of the programmed and erased states were negligibly changed up to 103 cycles. The flexibility, memory properties, and low-temperature fabrication of the nano-floating gate memory devices described herein suggest that they have potential applications for future flexible integrated electronics.

No MeSH data available.


Retention characteristics of the ZnO/Al-NPs memory TFT on the plastic substrate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211505&req=5

Figure 4: Retention characteristics of the ZnO/Al-NPs memory TFT on the plastic substrate.

Mentions: The retention properties of the flexible ZnO/Al-NPs memory TFT are demonstrated in Figure 4. The charge retention characteristics were measured at room temperature after stressing the flexible ZnO/Al-NPs memory TFT with a gate voltage of +8 V for 1 s, while the source and drain electrodes were grounded. The retention characteristics were also measured after erasing the device with a gate voltage of -8 V. After 103 s, there was a threshold voltage shift of 0.35 V, which is insufficient for commercial nonvolatile memory devices. The poor retention characteristics are ascribed to the inferior quality of the SiO2 layers deposited by the sputtering method without any post-annealing. The charge loss from the floating gate layer through the gate oxide layers could be reduced by replacing the sputtered SiO2 layer with a polymer insulator; note that polymer insulating materials, such as parylene-C introduced in our previous work [15], will be utilized in future works to reduce the charge loss from the floating gate layer without the need for a thermal process. The flexible ZnO/Al-NPs memory TFT structure with a polymer insulating layer would exhibit better retention characteristics.


Nano-Floating Gate Memory Devices Composed of ZnO Thin-Film Transistors on Flexible Plastics
Retention characteristics of the ZnO/Al-NPs memory TFT on the plastic substrate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211505&req=5

Figure 4: Retention characteristics of the ZnO/Al-NPs memory TFT on the plastic substrate.
Mentions: The retention properties of the flexible ZnO/Al-NPs memory TFT are demonstrated in Figure 4. The charge retention characteristics were measured at room temperature after stressing the flexible ZnO/Al-NPs memory TFT with a gate voltage of +8 V for 1 s, while the source and drain electrodes were grounded. The retention characteristics were also measured after erasing the device with a gate voltage of -8 V. After 103 s, there was a threshold voltage shift of 0.35 V, which is insufficient for commercial nonvolatile memory devices. The poor retention characteristics are ascribed to the inferior quality of the SiO2 layers deposited by the sputtering method without any post-annealing. The charge loss from the floating gate layer through the gate oxide layers could be reduced by replacing the sputtered SiO2 layer with a polymer insulator; note that polymer insulating materials, such as parylene-C introduced in our previous work [15], will be utilized in future works to reduce the charge loss from the floating gate layer without the need for a thermal process. The flexible ZnO/Al-NPs memory TFT structure with a polymer insulating layer would exhibit better retention characteristics.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Nano-floating gate memory devices were fabricated on a flexible plastic substrate by a low-temperature fabrication process. The memory characteristics of ZnO-based thin-film transistors with Al nanoparticles embedded in the gate oxides were investigated in this study. Their electron mobility was found to be 0.18 cm2/V·s and their on/off ratio was in the range of 104–105. The threshold voltages of the programmed and erased states were negligibly changed up to 103 cycles. The flexibility, memory properties, and low-temperature fabrication of the nano-floating gate memory devices described herein suggest that they have potential applications for future flexible integrated electronics.

No MeSH data available.