Limits...
Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution.

Chen ML, Oh WC - Nanoscale Res Lett (2011)

Bottom Line: Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material.The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer.The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, 356-706, Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer. The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

No MeSH data available.


Degradation of MB under visible light irradiation for the CNT-CdSe composite with different amount.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211492&req=5

Figure 8: Degradation of MB under visible light irradiation for the CNT-CdSe composite with different amount.

Mentions: Figure 8 shows the effect of the amount of the CNT-CdSe composite on the photocatalytic performance under visible-light irradiation. The concentration of MB solution is 1×10-5 mol/L. From the Figure 8, it is obvious that 0.05 g of the CNT-CdSe composite gave the best results of photodegradation of MB solution. And the photodegradation efficiency of the MB photocatalyzed by the CNT-CdSe composite decreased as the amount of the CNT-CdSe composite increased.


Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution.

Chen ML, Oh WC - Nanoscale Res Lett (2011)

Degradation of MB under visible light irradiation for the CNT-CdSe composite with different amount.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211492&req=5

Figure 8: Degradation of MB under visible light irradiation for the CNT-CdSe composite with different amount.
Mentions: Figure 8 shows the effect of the amount of the CNT-CdSe composite on the photocatalytic performance under visible-light irradiation. The concentration of MB solution is 1×10-5 mol/L. From the Figure 8, it is obvious that 0.05 g of the CNT-CdSe composite gave the best results of photodegradation of MB solution. And the photodegradation efficiency of the MB photocatalyzed by the CNT-CdSe composite decreased as the amount of the CNT-CdSe composite increased.

Bottom Line: Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material.The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer.The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, 356-706, Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer. The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

No MeSH data available.