Limits...
Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution.

Chen ML, Oh WC - Nanoscale Res Lett (2011)

Bottom Line: Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material.The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer.The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, 356-706, Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer. The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

No MeSH data available.


EDX microanalysis and element weight percentageof CdSe ((a) and (b)) and CNT-CdSe ((c) and (d)).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211492&req=5

Figure 5: EDX microanalysis and element weight percentageof CdSe ((a) and (b)) and CNT-CdSe ((c) and (d)).

Mentions: To get information about change in elements and element weight percent, the prepared CdSe and CNT-CdSe composite were examined by EDX. Figure 5 shows the EDX microanalysis and element weight percent of CdSe and CNT-CdSe composite. From Figure 5a, b, main elements such as Cd and Se are existed in CdSe composite. Apart from these two kinds of main elements, the main element C is also existed in CNT-CdSe composite, as shown in Figure 5c, d.


Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution.

Chen ML, Oh WC - Nanoscale Res Lett (2011)

EDX microanalysis and element weight percentageof CdSe ((a) and (b)) and CNT-CdSe ((c) and (d)).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211492&req=5

Figure 5: EDX microanalysis and element weight percentageof CdSe ((a) and (b)) and CNT-CdSe ((c) and (d)).
Mentions: To get information about change in elements and element weight percent, the prepared CdSe and CNT-CdSe composite were examined by EDX. Figure 5 shows the EDX microanalysis and element weight percent of CdSe and CNT-CdSe composite. From Figure 5a, b, main elements such as Cd and Se are existed in CdSe composite. Apart from these two kinds of main elements, the main element C is also existed in CNT-CdSe composite, as shown in Figure 5c, d.

Bottom Line: Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material.The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer.The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do, 356-706, Korea. wc_oh@hanseo.ac.kr.

ABSTRACT
Carbon nanotube-cadmium selenide (CNT-CdSe) composite was synthesized by a facile hydrothermal method derived from multi-walled carbon nanotubes as a stating material. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectrophotometer. The as-synthesized CNT-CdSe composite efficiently catalyzed the photodegradation of methylene blue in aqueous solutions under visible-light irradiation, exhibiting higher photocatalytic activity.

No MeSH data available.