Limits...
Flow through a circular tube with a permeable Navier slip boundary.

Cox BJ, Hill JM - Nanoscale Res Lett (2011)

Bottom Line: Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure.Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions.The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary.

View Article: PubMed Central - HTML - PubMed

Affiliation: Nanomechanics Group, School of Mathematical Sciences, University of Adelaide, SA 5005, Australia. barry.cox@adelaide.edu.au.

ABSTRACT
For Newtonian fluid flow in a right circular tube, with a linear Navier slip boundary, we show that a second flow field arises which is different to conventional Poiseuille flow in the sense that the corresponding pressure is quadratic in its dependence on the length along the tube, rather than a linear dependence which applies for conventional Poiseuille flow. However, assuming that the quadratic pressure is determined, say from known experimental data, then the new solution only exists for a precisely prescribed permeability along the boundary. While this cannot occur for conventional pipe flow, for fluid flow through carbon nanotubes embedded in a porous matrix, it may well be an entirely realistic possibility, and could well explain some of the high flow rates which have been reported in the literature. Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure. Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions. The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary.

No MeSH data available.


Related in: MedlinePlus

Flow in a cylinder of radius a and length L, with radial velocity u and axial velocity v.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211482&req=5

Figure 1: Flow in a cylinder of radius a and length L, with radial velocity u and axial velocity v.

Mentions: We consider axially symmetric incompressible flow of a Newtonian fluid in a nanotube, with a linear Navier slip boundary condition applying on the tube wall. In cylindrical polar coordinates (r, θ, z) with radial velocity u(r, z) and axial velocity v(r, z) as illustrated in Figure 1, the three basic partial differential equations for axially symmetric flow arising from the Navier-Stokes equations and the condition of incompressibility are(1)(2)(3)


Flow through a circular tube with a permeable Navier slip boundary.

Cox BJ, Hill JM - Nanoscale Res Lett (2011)

Flow in a cylinder of radius a and length L, with radial velocity u and axial velocity v.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211482&req=5

Figure 1: Flow in a cylinder of radius a and length L, with radial velocity u and axial velocity v.
Mentions: We consider axially symmetric incompressible flow of a Newtonian fluid in a nanotube, with a linear Navier slip boundary condition applying on the tube wall. In cylindrical polar coordinates (r, θ, z) with radial velocity u(r, z) and axial velocity v(r, z) as illustrated in Figure 1, the three basic partial differential equations for axially symmetric flow arising from the Navier-Stokes equations and the condition of incompressibility are(1)(2)(3)

Bottom Line: Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure.Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions.The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary.

View Article: PubMed Central - HTML - PubMed

Affiliation: Nanomechanics Group, School of Mathematical Sciences, University of Adelaide, SA 5005, Australia. barry.cox@adelaide.edu.au.

ABSTRACT
For Newtonian fluid flow in a right circular tube, with a linear Navier slip boundary, we show that a second flow field arises which is different to conventional Poiseuille flow in the sense that the corresponding pressure is quadratic in its dependence on the length along the tube, rather than a linear dependence which applies for conventional Poiseuille flow. However, assuming that the quadratic pressure is determined, say from known experimental data, then the new solution only exists for a precisely prescribed permeability along the boundary. While this cannot occur for conventional pipe flow, for fluid flow through carbon nanotubes embedded in a porous matrix, it may well be an entirely realistic possibility, and could well explain some of the high flow rates which have been reported in the literature. Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure. Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions. The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary.

No MeSH data available.


Related in: MedlinePlus