Limits...
Long-term oxidization and phase transition of InN nanotextures.

Sarantopoulou E, Kollia Z, Dražic G, Kobe S, Antonakakis NS - Nanoscale Res Lett (2011)

Bottom Line: The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed.The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture.When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635, Greece. esarant@eie.gr.

ABSTRACT
The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

No MeSH data available.


Related in: MedlinePlus

EDXS of film deposited on a Si substrate. The ratio of concentrations is (0.5InN/0.5In2O3) (a), and (0.3InN/0.7In2O3) (b) for 3 and 6 months exposure at ambient conditions, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211480&req=5

Figure 7: EDXS of film deposited on a Si substrate. The ratio of concentrations is (0.5InN/0.5In2O3) (a), and (0.3InN/0.7In2O3) (b) for 3 and 6 months exposure at ambient conditions, respectively.

Mentions: The concentration of oxygen in the film, measured with EDXS, is constantly increasing during the storage period and is uniform in areas of the same film morphology while the presence of oxygen is noticeable in the entire film area indicating the post-ablation oxidization process. A typical EDXS recorded 3 and 6 months after the film growth is shown in Figure 7a, b.


Long-term oxidization and phase transition of InN nanotextures.

Sarantopoulou E, Kollia Z, Dražic G, Kobe S, Antonakakis NS - Nanoscale Res Lett (2011)

EDXS of film deposited on a Si substrate. The ratio of concentrations is (0.5InN/0.5In2O3) (a), and (0.3InN/0.7In2O3) (b) for 3 and 6 months exposure at ambient conditions, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211480&req=5

Figure 7: EDXS of film deposited on a Si substrate. The ratio of concentrations is (0.5InN/0.5In2O3) (a), and (0.3InN/0.7In2O3) (b) for 3 and 6 months exposure at ambient conditions, respectively.
Mentions: The concentration of oxygen in the film, measured with EDXS, is constantly increasing during the storage period and is uniform in areas of the same film morphology while the presence of oxygen is noticeable in the entire film area indicating the post-ablation oxidization process. A typical EDXS recorded 3 and 6 months after the film growth is shown in Figure 7a, b.

Bottom Line: The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed.The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture.When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635, Greece. esarant@eie.gr.

ABSTRACT
The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

No MeSH data available.


Related in: MedlinePlus