Limits...
Long-term oxidization and phase transition of InN nanotextures.

Sarantopoulou E, Kollia Z, Dražic G, Kobe S, Antonakakis NS - Nanoscale Res Lett (2011)

Bottom Line: The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed.The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture.When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635, Greece. esarant@eie.gr.

ABSTRACT
The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

No MeSH data available.


HRTEM image of InN nanostructures deposited on a Si [100] substrate. The images indicate the superposition of crystal areas of different contrasts and with parallel Laue levels, depicted within the peripheries of the circles C1, C2 and A. Various amorphous nanodomains are indicated within the peripheries of the triangle and the circle B.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211480&req=5

Figure 5: HRTEM image of InN nanostructures deposited on a Si [100] substrate. The images indicate the superposition of crystal areas of different contrasts and with parallel Laue levels, depicted within the peripheries of the circles C1, C2 and A. Various amorphous nanodomains are indicated within the peripheries of the triangle and the circle B.

Mentions: Using mild electron beam conditions two days after the PLD experiment, hexagonal hcp-InN crystal (Figure 5, circle A) and amorphous phases (Figure 5, circle B) approximately 10 nm wide are identified.


Long-term oxidization and phase transition of InN nanotextures.

Sarantopoulou E, Kollia Z, Dražic G, Kobe S, Antonakakis NS - Nanoscale Res Lett (2011)

HRTEM image of InN nanostructures deposited on a Si [100] substrate. The images indicate the superposition of crystal areas of different contrasts and with parallel Laue levels, depicted within the peripheries of the circles C1, C2 and A. Various amorphous nanodomains are indicated within the peripheries of the triangle and the circle B.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211480&req=5

Figure 5: HRTEM image of InN nanostructures deposited on a Si [100] substrate. The images indicate the superposition of crystal areas of different contrasts and with parallel Laue levels, depicted within the peripheries of the circles C1, C2 and A. Various amorphous nanodomains are indicated within the peripheries of the triangle and the circle B.
Mentions: Using mild electron beam conditions two days after the PLD experiment, hexagonal hcp-InN crystal (Figure 5, circle A) and amorphous phases (Figure 5, circle B) approximately 10 nm wide are identified.

Bottom Line: The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed.The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture.When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635, Greece. esarant@eie.gr.

ABSTRACT
The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

No MeSH data available.