Limits...
Nanostructured hybrid ZnO thin films for energy conversion.

Moya M, Samantilleke AP, Mollar M, Marí B - Nanoscale Res Lett (2011)

Bottom Line: We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY).High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films.Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department de Física Aplicada-IDF, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain. anura@fisica.uminho.pt.

ABSTRACT
We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

No MeSH data available.


Related in: MedlinePlus

SEM images of ZnO/Dye hybrid thin films.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211477&req=5

Figure 2: SEM images of ZnO/Dye hybrid thin films.

Mentions: Figure 2 shows the SEM images of deposited ZnO/Dye hybrid thin film structures. The surface morphology of the ZnO/EoY hybrid films shows irregularly connected nanoparticles randomly stacked in large domains (approx. 1 μm), forming a porous structure. As Figure 2a shows each particle domain is made up of an aggregation of small nanoscale crystallites. A highly porous structure would increase the surface area of ZnO significantly. In contrast, the morphology of ZnO/TS-CuPc is cauliflower-like with a porous structure (Figure 2b) consisting of a few nanometer-thick vertically aligned ZnO nanoflakes. These elongated nanoflakes are deeper compared with the structure of the film of ZnO/EoY, and the discontinuity between nanoflakes makes a significantly porous structure. Both these structures are different from that of pure uniform hexagonal phase ZnO (Figure 2c); however, for the optimum efficiency of the ZnO structure, the dye should form a unimolecular layer on the porous surface of ZnO film covering the entire surface. EoY dye would have been completely desorbed from the hybrid film when the film was soaked in NaOH, and hence it was soaked for only 40 min. The ZnO/TS-CuPc films could not be completely desorbed, even after 24 h, as these films consist of both closed and open pores, while ZnO/EoY films only contain open pores.


Nanostructured hybrid ZnO thin films for energy conversion.

Moya M, Samantilleke AP, Mollar M, Marí B - Nanoscale Res Lett (2011)

SEM images of ZnO/Dye hybrid thin films.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211477&req=5

Figure 2: SEM images of ZnO/Dye hybrid thin films.
Mentions: Figure 2 shows the SEM images of deposited ZnO/Dye hybrid thin film structures. The surface morphology of the ZnO/EoY hybrid films shows irregularly connected nanoparticles randomly stacked in large domains (approx. 1 μm), forming a porous structure. As Figure 2a shows each particle domain is made up of an aggregation of small nanoscale crystallites. A highly porous structure would increase the surface area of ZnO significantly. In contrast, the morphology of ZnO/TS-CuPc is cauliflower-like with a porous structure (Figure 2b) consisting of a few nanometer-thick vertically aligned ZnO nanoflakes. These elongated nanoflakes are deeper compared with the structure of the film of ZnO/EoY, and the discontinuity between nanoflakes makes a significantly porous structure. Both these structures are different from that of pure uniform hexagonal phase ZnO (Figure 2c); however, for the optimum efficiency of the ZnO structure, the dye should form a unimolecular layer on the porous surface of ZnO film covering the entire surface. EoY dye would have been completely desorbed from the hybrid film when the film was soaked in NaOH, and hence it was soaked for only 40 min. The ZnO/TS-CuPc films could not be completely desorbed, even after 24 h, as these films consist of both closed and open pores, while ZnO/EoY films only contain open pores.

Bottom Line: We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY).High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films.Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department de Física Aplicada-IDF, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain. anura@fisica.uminho.pt.

ABSTRACT
We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

No MeSH data available.


Related in: MedlinePlus