Limits...
A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus

Experimental setup of Hwang et al. [23].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211470&req=5

Figure 8: Experimental setup of Hwang et al. [23].

Mentions: Experimental investigations on the convective heat transfer coefficient of water-Al2O3 nanofluids in fully developed laminar flow regime have been reported by Hwang et al. [23]. Their experimental setup consisted of a circular tube of diameter 1.812 mm and length 2500 mm, with a test section having an externally insulated electrical heater supplying a constant surface heat flux (5000 W/m2), a pump, a reservoir tank, and a cooler, as shown in Figure 8. T-type thermocouples were used to measure the tube wall temperatures, Ts(x), and the mean fluid temperatures at the inlet (Tm,i) and the exit. A differential pressure transducer was used to measure the pressure drop across the test section. The flow rate was held in the range of 0.4 to 21 mL/min. With the measured temperatures, heat flux, and the flow rate, the local heat transfer coefficients were calculated as follows:(16)


A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Experimental setup of Hwang et al. [23].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211470&req=5

Figure 8: Experimental setup of Hwang et al. [23].
Mentions: Experimental investigations on the convective heat transfer coefficient of water-Al2O3 nanofluids in fully developed laminar flow regime have been reported by Hwang et al. [23]. Their experimental setup consisted of a circular tube of diameter 1.812 mm and length 2500 mm, with a test section having an externally insulated electrical heater supplying a constant surface heat flux (5000 W/m2), a pump, a reservoir tank, and a cooler, as shown in Figure 8. T-type thermocouples were used to measure the tube wall temperatures, Ts(x), and the mean fluid temperatures at the inlet (Tm,i) and the exit. A differential pressure transducer was used to measure the pressure drop across the test section. The flow rate was held in the range of 0.4 to 21 mL/min. With the measured temperatures, heat flux, and the flow rate, the local heat transfer coefficients were calculated as follows:(16)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus