Limits...
A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus

Construction of the test cell used by Das et al. [11].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211470&req=5

Figure 3: Construction of the test cell used by Das et al. [11].

Mentions: The test cell is a flat cylindrical cell as shown in Figure 3, which is cooled on both of the ends using a thermostatic bath. DC power is applied to the Peltier element. A number of thermocouples measure the temperatures in the test section which are amplified, filtered, and fed to the data acquisition system. The frame of the cell is made of POM (polyoxymethylene), which acts as the first layer of insulation. The frame has a 40-mm diameter cavity to hold the test fluid. Two disk type reference materials of 40 mm diameter and 15 mm thickness are kept on top and bottom side of the cavity. The space for the test fluid has a dimension of 40 mm diameter and 8 mm thickness. The fluid is filled through a small hole in the body of the cell. Temperatures are measured at the interface of the Peltier element and the reference layer, at the interface of the reference layer and test fluid and the central axial plane of the test fluid. The thermocouples are held precisely centralized. The entire cell is externally insulated. The experimental setup was calibrated by measuring the thermal diffusivity of demineralized and distilled water over the temperature range of 20 to 50°C. The results showed that the average deviation of thermal diffusivity from the standard values was 2.7%. As the range of enhancement in thermal conductivity values of nanofluids is 2 to 36%, this ranges of accuracy was found to be acceptable.


A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Construction of the test cell used by Das et al. [11].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211470&req=5

Figure 3: Construction of the test cell used by Das et al. [11].
Mentions: The test cell is a flat cylindrical cell as shown in Figure 3, which is cooled on both of the ends using a thermostatic bath. DC power is applied to the Peltier element. A number of thermocouples measure the temperatures in the test section which are amplified, filtered, and fed to the data acquisition system. The frame of the cell is made of POM (polyoxymethylene), which acts as the first layer of insulation. The frame has a 40-mm diameter cavity to hold the test fluid. Two disk type reference materials of 40 mm diameter and 15 mm thickness are kept on top and bottom side of the cavity. The space for the test fluid has a dimension of 40 mm diameter and 8 mm thickness. The fluid is filled through a small hole in the body of the cell. Temperatures are measured at the interface of the Peltier element and the reference layer, at the interface of the reference layer and test fluid and the central axial plane of the test fluid. The thermocouples are held precisely centralized. The entire cell is externally insulated. The experimental setup was calibrated by measuring the thermal diffusivity of demineralized and distilled water over the temperature range of 20 to 50°C. The results showed that the average deviation of thermal diffusivity from the standard values was 2.7%. As the range of enhancement in thermal conductivity values of nanofluids is 2 to 36%, this ranges of accuracy was found to be acceptable.

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus