Limits...
A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus

The fluid volume for analysis corresponding to the experimental setup of Das et al. [11].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211470&req=5

Figure 2: The fluid volume for analysis corresponding to the experimental setup of Das et al. [11].

Mentions: Das et al. [11] proposed and demonstrated the temperature oscillation method for estimating thermal conductivity and thermal diffusivity of nanofluids. The method can be understood with the help of Figure 2, which shows a cylindrical fluid volume analyzed, with periodic temperature oscillations applied at surfaces A and B. The temperature oscillations are generated using Peltier elements attached to reference layer. The Peltier elements are powered by a DC power source. The real measurable phase shift and amplitude ratio of temperature oscillation can be expressed as,(1)


A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

The fluid volume for analysis corresponding to the experimental setup of Das et al. [11].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211470&req=5

Figure 2: The fluid volume for analysis corresponding to the experimental setup of Das et al. [11].
Mentions: Das et al. [11] proposed and demonstrated the temperature oscillation method for estimating thermal conductivity and thermal diffusivity of nanofluids. The method can be understood with the help of Figure 2, which shows a cylindrical fluid volume analyzed, with periodic temperature oscillations applied at surfaces A and B. The temperature oscillations are generated using Peltier elements attached to reference layer. The Peltier elements are powered by a DC power source. The real measurable phase shift and amplitude ratio of temperature oscillation can be expressed as,(1)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus