Limits...
A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus

Experimental setup of Khandekar et al. [39].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211470&req=5

Figure 18: Experimental setup of Khandekar et al. [39].

Mentions: Khandekar et al. [39] reported investigations on the thermal performance of a closed two-phase thermosyphon system, using pure water and various water-based nanofluids of Al2O3, CuO, and laponite clay as working fluids. The setup shown in Figure 18 has a pressure transducer fitted to the thermosyphon to monitor proper initial vacuum level and subsequent saturation pressure profiles. Four mica insulated surface heaters (116 mm × 48 mm) were mounted on the outer surface of a copper heating block (120 mm × 50 mm × 50 mm) with a center bore to accommodate the thermosyphon container which acts as the evaporator. The finned tube condenser was made of 40 square copper fins (70 mm × 70 mm × 1 mm), brazed at a pitch of 6.5 mm. The inlet and outlet of the shell side were designed so as to produce cross-flow conditions over the condenser fins. K-type thermocouples were used to measure the temperature at important axial locations on the thermosyphon tube. A PC based data acquisition system (NI-PCI-4351, National Instruments) was used to acquire the data.


A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Experimental setup of Khandekar et al. [39].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211470&req=5

Figure 18: Experimental setup of Khandekar et al. [39].
Mentions: Khandekar et al. [39] reported investigations on the thermal performance of a closed two-phase thermosyphon system, using pure water and various water-based nanofluids of Al2O3, CuO, and laponite clay as working fluids. The setup shown in Figure 18 has a pressure transducer fitted to the thermosyphon to monitor proper initial vacuum level and subsequent saturation pressure profiles. Four mica insulated surface heaters (116 mm × 48 mm) were mounted on the outer surface of a copper heating block (120 mm × 50 mm × 50 mm) with a center bore to accommodate the thermosyphon container which acts as the evaporator. The finned tube condenser was made of 40 square copper fins (70 mm × 70 mm × 1 mm), brazed at a pitch of 6.5 mm. The inlet and outlet of the shell side were designed so as to produce cross-flow conditions over the condenser fins. K-type thermocouples were used to measure the temperature at important axial locations on the thermosyphon tube. A PC based data acquisition system (NI-PCI-4351, National Instruments) was used to acquire the data.

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus