Limits...
A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus

Variation of heat transfer coefficient with particle size and Reynolds number as given by Anoop et al. [25].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211470&req=5

Figure 12: Variation of heat transfer coefficient with particle size and Reynolds number as given by Anoop et al. [25].

Mentions: The convective heat transfer coefficient was measured with nanofluids mixed with Al2O3 nanoparticles of average sizes 45 and 150 nm. In the developing flow region and for a Reynolds number of 1500, the 45-nm sized particles gave 25% enhancement in heat transfer compared with 11% by the 150-nm particles, for a concentration of 4% by weight, as shown in Figure 12. The enhancement in heat transfer coefficient was also found to decrease, from the developing to fully developed region. For a concentration of 4% (by weight) of 45 nm particles and an approximate Reynolds number of 1500, the enhancement in heat transfer coefficient was 31% at x/D = 63, while it was 10% at x/D = 244. The uncertainty in the measurement of thermal conductivity was found to be less than 2%, and that for viscosity was 0.5%. A systematic uncertainty analysis yielded the maximum error in the Reynolds number and the Nusselt number to be around 3.24 and 2.45%, respectively.


A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Variation of heat transfer coefficient with particle size and Reynolds number as given by Anoop et al. [25].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211470&req=5

Figure 12: Variation of heat transfer coefficient with particle size and Reynolds number as given by Anoop et al. [25].
Mentions: The convective heat transfer coefficient was measured with nanofluids mixed with Al2O3 nanoparticles of average sizes 45 and 150 nm. In the developing flow region and for a Reynolds number of 1500, the 45-nm sized particles gave 25% enhancement in heat transfer compared with 11% by the 150-nm particles, for a concentration of 4% by weight, as shown in Figure 12. The enhancement in heat transfer coefficient was also found to decrease, from the developing to fully developed region. For a concentration of 4% (by weight) of 45 nm particles and an approximate Reynolds number of 1500, the enhancement in heat transfer coefficient was 31% at x/D = 63, while it was 10% at x/D = 244. The uncertainty in the measurement of thermal conductivity was found to be less than 2%, and that for viscosity was 0.5%. A systematic uncertainty analysis yielded the maximum error in the Reynolds number and the Nusselt number to be around 3.24 and 2.45%, respectively.

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus