Limits...
A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus

Experimental setup of Heris et al. [24].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211470&req=5

Figure 10: Experimental setup of Heris et al. [24].

Mentions: Heris et al. [24] measured convective heat transfer in nanofluids in a circular tube, subjected to a constant wall temperature condition. The test section consisted of a concentric tube assembly of 1 m length. In this, the inner copper tube was of 6 mm diameter and 0.5 mm thickness, and the outer stainless steel tube was of 32 mm diameter, which was externally insulated with fiber glass. The experimental setup is shown schematically in Figure 10. The constant wall temperature condition was maintained by passing saturated steam through the annular section. The nanofluid flow rate was controlled by a reflux line with a valve. K-type thermocouples were used to measure the wall temperatures (Tw) and bulk temperatures of the nanofluid at the inlet and the outlet (Tb1 and Tb2). A manometer was used to measure the pressure drop along the test section. From a measurement of the time required to fill the glass vessel, the flow rate was calculated. The uncertainties associated with the measurement of the temperature and the flow rate measurements were found to be 1.0 and 2.0%, respectively. The convective heat transfer coefficient and the Nusselt number were calculated as follows:(18)(19)


A review of experimental investigations on thermal phenomena in nanofluids.

Thomas S, Balakrishna Panicker Sobhan C - Nanoscale Res Lett (2011)

Experimental setup of Heris et al. [24].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211470&req=5

Figure 10: Experimental setup of Heris et al. [24].
Mentions: Heris et al. [24] measured convective heat transfer in nanofluids in a circular tube, subjected to a constant wall temperature condition. The test section consisted of a concentric tube assembly of 1 m length. In this, the inner copper tube was of 6 mm diameter and 0.5 mm thickness, and the outer stainless steel tube was of 32 mm diameter, which was externally insulated with fiber glass. The experimental setup is shown schematically in Figure 10. The constant wall temperature condition was maintained by passing saturated steam through the annular section. The nanofluid flow rate was controlled by a reflux line with a valve. K-type thermocouples were used to measure the wall temperatures (Tw) and bulk temperatures of the nanofluid at the inlet and the outlet (Tb1 and Tb2). A manometer was used to measure the pressure drop along the test section. From a measurement of the time required to fill the glass vessel, the flow rate was calculated. The uncertainties associated with the measurement of the temperature and the flow rate measurements were found to be 1.0 and 2.0%, respectively. The convective heat transfer coefficient and the Nusselt number were calculated as follows:(18)(19)

Bottom Line: Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena.A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids.This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Nano Science and Technology, NIT Calicut, Kerala, India. csobhan@nitc.ac.in.

ABSTRACT
Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids.

No MeSH data available.


Related in: MedlinePlus