Limits...
Preparation and properties of copper-oil-based nanofluids.

Li D, Xie W, Fang W - Nanoscale Res Lett (2011)

Bottom Line: The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids.The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids.Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China. danli830109@163.com.

ABSTRACT
In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

No MeSH data available.


(a) SEM image; (b) EDX spectrum of the surface-modified Cu nanoparticles; (c) TEM images SAED pattern; and (d) HTEM image.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211464&req=5

Figure 4: (a) SEM image; (b) EDX spectrum of the surface-modified Cu nanoparticles; (c) TEM images SAED pattern; and (d) HTEM image.

Mentions: Figure 4 shows an SEM image (Figure 4a), an EDX spectrum (Figure 4b), a TEM image, and HTEM image of the surface-modified Cu nanoparticles. Nanoparticles with diameter in the range of 40-60 nm can be seen from the SEM image. The EDX analysis indicates that the Cu mass fraction in the prepared nanoparticles is 60-62%. This is consistent with the TG analysis. Figure 4c depicts a TEM image and the corresponding selected area electron diffraction (SAED) pattern. The micrograph reveals that the surface-modified Cu nanoparticles consist of spherical particles. The diffraction pattern further proves an fcc structure. The lattice fringes of Cu nanoparticles observed by close inspection with HRTEM are shown in Figure 4d.


Preparation and properties of copper-oil-based nanofluids.

Li D, Xie W, Fang W - Nanoscale Res Lett (2011)

(a) SEM image; (b) EDX spectrum of the surface-modified Cu nanoparticles; (c) TEM images SAED pattern; and (d) HTEM image.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211464&req=5

Figure 4: (a) SEM image; (b) EDX spectrum of the surface-modified Cu nanoparticles; (c) TEM images SAED pattern; and (d) HTEM image.
Mentions: Figure 4 shows an SEM image (Figure 4a), an EDX spectrum (Figure 4b), a TEM image, and HTEM image of the surface-modified Cu nanoparticles. Nanoparticles with diameter in the range of 40-60 nm can be seen from the SEM image. The EDX analysis indicates that the Cu mass fraction in the prepared nanoparticles is 60-62%. This is consistent with the TG analysis. Figure 4c depicts a TEM image and the corresponding selected area electron diffraction (SAED) pattern. The micrograph reveals that the surface-modified Cu nanoparticles consist of spherical particles. The diffraction pattern further proves an fcc structure. The lattice fringes of Cu nanoparticles observed by close inspection with HRTEM are shown in Figure 4d.

Bottom Line: The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids.The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids.Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China. danli830109@163.com.

ABSTRACT
In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

No MeSH data available.