Limits...
Preparation and properties of copper-oil-based nanofluids.

Li D, Xie W, Fang W - Nanoscale Res Lett (2011)

Bottom Line: The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids.The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids.Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China. danli830109@163.com.

ABSTRACT
In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

No MeSH data available.


Infrared spectra of (a) O, O-di-n-cetyldithiophosphate, and (b) surface-modified Cu nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211464&req=5

Figure 2: Infrared spectra of (a) O, O-di-n-cetyldithiophosphate, and (b) surface-modified Cu nanoparticles.

Mentions: Infrared spectra of O, O-di-n-cetyldithiophosphate and surface-modified Cu nanoparticles are shown in Figure 2. As shown in Figure 2a, the absorptions at 2918 and 2850 cm-1 are assigned to the stretching vibrations of CH2 groups, and the band at 1470 cm-1 corresponds to the deformation vibration of CH2 groups. The absorption at 720 cm-1 is due to the rocking vibration of the long chain alkanes [(CH2)n, n > 4]. The absorptions from 930 to 1050 cm-1 are attributed to the stretching vibration of O-CH2. The absorptions at 687 and 670 cm-1 are attributed to the stretching vibrations of P = S group, while the absorption at 582 cm-1 is attributed to the stretching vibrations of P-S group. The absorption at 1400 cm-1 is assigned to the stretching vibrations of NH4+. As shown in Figure 2b, the bands of C-H and O-CH2 are also observed in the surface-modified Cu nanoparticles, while the absorption peaks of P = S and P-S shifts, and the bands of N-H mostly disappear.


Preparation and properties of copper-oil-based nanofluids.

Li D, Xie W, Fang W - Nanoscale Res Lett (2011)

Infrared spectra of (a) O, O-di-n-cetyldithiophosphate, and (b) surface-modified Cu nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211464&req=5

Figure 2: Infrared spectra of (a) O, O-di-n-cetyldithiophosphate, and (b) surface-modified Cu nanoparticles.
Mentions: Infrared spectra of O, O-di-n-cetyldithiophosphate and surface-modified Cu nanoparticles are shown in Figure 2. As shown in Figure 2a, the absorptions at 2918 and 2850 cm-1 are assigned to the stretching vibrations of CH2 groups, and the band at 1470 cm-1 corresponds to the deformation vibration of CH2 groups. The absorption at 720 cm-1 is due to the rocking vibration of the long chain alkanes [(CH2)n, n > 4]. The absorptions from 930 to 1050 cm-1 are attributed to the stretching vibration of O-CH2. The absorptions at 687 and 670 cm-1 are attributed to the stretching vibrations of P = S group, while the absorption at 582 cm-1 is attributed to the stretching vibrations of P-S group. The absorption at 1400 cm-1 is assigned to the stretching vibrations of NH4+. As shown in Figure 2b, the bands of C-H and O-CH2 are also observed in the surface-modified Cu nanoparticles, while the absorption peaks of P = S and P-S shifts, and the bands of N-H mostly disappear.

Bottom Line: The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids.The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids.Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China. danli830109@163.com.

ABSTRACT
In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

No MeSH data available.