Limits...
Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction.

Petti L, Rippa M, Zhou J, Manna L, Zanella M, Mormile P - Nanoscale Res Lett (2011)

Bottom Line: Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure.The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm.The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices.PACS: 81.07.Pr Organic-inorganic hybrid nanostructures, 81.16.-c Methods of nanofabrication and processing, 42.70.Qs Photonic band-gap materials.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Cybernetics "E, Caianiello" of CNR, Via Campi Flegrei 34, 80072 Pozzuoli, Italy. L.petti@cib.na.cnr.it.

ABSTRACT
Recently, important efforts have been dedicated to the realization of a fascinating class of new photonic materials or metamaterials, known as photonic quasicrystals (PQCs), in which the lack of the translational symmetry is compensated by rotational symmetries not achievable by the conventional periodic crystals. As ever, more advanced functionality is demanded and one strategy is the introduction of non-linear and/or active functionality in photonic materials. In this view, core/shell nanorods (NRs) are a promising active material for light-emitting applications. In this article a two-dimensional (2D) hybrid a 2D octagonal PQC which consists of air rods in an organic/inorganic nanocomposite is proposed and experimentally demonstrated. The nanocomposite was prepared by incorporating CdSe/CdS core/shell NRs into a polymer matrix. The PQC was realized by electron beam lithography (EBL) technique. Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm. The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices.PACS: 81.07.Pr Organic-inorganic hybrid nanostructures, 81.16.-c Methods of nanofabrication and processing, 42.70.Qs Photonic band-gap materials.

No MeSH data available.


Related in: MedlinePlus

Pattern design. Schematic figure showing the octagonal quasiperiodic arrangement of cylinders.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211462&req=5

Figure 3: Pattern design. Schematic figure showing the octagonal quasiperiodic arrangement of cylinders.

Mentions: Recently, the importance of tiling geometry in the arrangement of the octagonal quasicrystal was discussed. The fabricated octagonal structure was determined by simulating the quasiperiodic transverse irradiance distribution given by 8-beam interference process and was theoretically analyzed through finite difference time domain (FDTD) simulations of the transmittance spectra [41]. The octagonal tiling gives rise to a wide photonic band-gap for low refractive index difference as low as 0.5 with an attenuation of the transmittance signal up to 50 dB [42]. Therefore, optoelectronics and photonics devices based on such octagonal photonic quasicrystal promise to be realized even in soft materials like polymer. The arrangement of the cylinders is shown schematically in Figure 3.


Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction.

Petti L, Rippa M, Zhou J, Manna L, Zanella M, Mormile P - Nanoscale Res Lett (2011)

Pattern design. Schematic figure showing the octagonal quasiperiodic arrangement of cylinders.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211462&req=5

Figure 3: Pattern design. Schematic figure showing the octagonal quasiperiodic arrangement of cylinders.
Mentions: Recently, the importance of tiling geometry in the arrangement of the octagonal quasicrystal was discussed. The fabricated octagonal structure was determined by simulating the quasiperiodic transverse irradiance distribution given by 8-beam interference process and was theoretically analyzed through finite difference time domain (FDTD) simulations of the transmittance spectra [41]. The octagonal tiling gives rise to a wide photonic band-gap for low refractive index difference as low as 0.5 with an attenuation of the transmittance signal up to 50 dB [42]. Therefore, optoelectronics and photonics devices based on such octagonal photonic quasicrystal promise to be realized even in soft materials like polymer. The arrangement of the cylinders is shown schematically in Figure 3.

Bottom Line: Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure.The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm.The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices.PACS: 81.07.Pr Organic-inorganic hybrid nanostructures, 81.16.-c Methods of nanofabrication and processing, 42.70.Qs Photonic band-gap materials.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Cybernetics "E, Caianiello" of CNR, Via Campi Flegrei 34, 80072 Pozzuoli, Italy. L.petti@cib.na.cnr.it.

ABSTRACT
Recently, important efforts have been dedicated to the realization of a fascinating class of new photonic materials or metamaterials, known as photonic quasicrystals (PQCs), in which the lack of the translational symmetry is compensated by rotational symmetries not achievable by the conventional periodic crystals. As ever, more advanced functionality is demanded and one strategy is the introduction of non-linear and/or active functionality in photonic materials. In this view, core/shell nanorods (NRs) are a promising active material for light-emitting applications. In this article a two-dimensional (2D) hybrid a 2D octagonal PQC which consists of air rods in an organic/inorganic nanocomposite is proposed and experimentally demonstrated. The nanocomposite was prepared by incorporating CdSe/CdS core/shell NRs into a polymer matrix. The PQC was realized by electron beam lithography (EBL) technique. Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm. The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices.PACS: 81.07.Pr Organic-inorganic hybrid nanostructures, 81.16.-c Methods of nanofabrication and processing, 42.70.Qs Photonic band-gap materials.

No MeSH data available.


Related in: MedlinePlus