Limits...
Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support.

Zhou C, Liu Z, Yan Y, Du X, Mai YW, Ringer S - Nanoscale Res Lett (2011)

Bottom Line: The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm.The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied.Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006, Australia. zongwen.liu@sydney.edu.au.

ABSTRACT
Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm. The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied. Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity. The specific nanostructure of the polymer was further studied as catalyst support for platinum nanoparticles to methanol electro-oxidation.

No MeSH data available.


Related in: MedlinePlus

Images of the Pt-PEDOT composites. (a)SEM and (b)TEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211454&req=5

Figure 6: Images of the Pt-PEDOT composites. (a)SEM and (b)TEM.

Mentions: Figure 6 shows the morphology of the Pt-PEDOT materials. The white grains in the SEM micrographs (Figure 6a) are attributed to platinum nanoparticles. Due to high degree of porosity nanosheet structure of the PEDOT film, it favors for platinum particles to be uniformly dispersed over the film surface. The EDS results also prove the existence of Pt in the composite and the content of the platinum in the composite was 50 wt%. In the TEM image (Figure 6b), the Pt particles were uniformly dispersed on the surface and edge of the PEDOT sheets. Some aggregates with a diameter of about 20 to 60 nm can also be observed occasionally and they are composed of fine Pt particles (about 3 to 6 nm of size).


Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support.

Zhou C, Liu Z, Yan Y, Du X, Mai YW, Ringer S - Nanoscale Res Lett (2011)

Images of the Pt-PEDOT composites. (a)SEM and (b)TEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211454&req=5

Figure 6: Images of the Pt-PEDOT composites. (a)SEM and (b)TEM.
Mentions: Figure 6 shows the morphology of the Pt-PEDOT materials. The white grains in the SEM micrographs (Figure 6a) are attributed to platinum nanoparticles. Due to high degree of porosity nanosheet structure of the PEDOT film, it favors for platinum particles to be uniformly dispersed over the film surface. The EDS results also prove the existence of Pt in the composite and the content of the platinum in the composite was 50 wt%. In the TEM image (Figure 6b), the Pt particles were uniformly dispersed on the surface and edge of the PEDOT sheets. Some aggregates with a diameter of about 20 to 60 nm can also be observed occasionally and they are composed of fine Pt particles (about 3 to 6 nm of size).

Bottom Line: The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm.The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied.Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006, Australia. zongwen.liu@sydney.edu.au.

ABSTRACT
Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm. The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied. Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity. The specific nanostructure of the polymer was further studied as catalyst support for platinum nanoparticles to methanol electro-oxidation.

No MeSH data available.


Related in: MedlinePlus