Limits...
Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities.

Zdetsis AD - Nanoscale Res Lett (2011)

Bottom Line: When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon.Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation.Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics University of Patras, GR 26500, Patra, Greece. zdetsis@upatras.gr.

ABSTRACT
A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

No MeSH data available.


Related in: MedlinePlus

The periodical table of the main group elements. The diagonal line roughly separates metals and non-metals.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211452&req=5

Figure 1: The periodical table of the main group elements. The diagonal line roughly separates metals and non-metals.

Mentions: There are several very powerful, general and fruitful concepts in physics and chemistry which are, at the same time, miraculously simple and highly efficient for the molecular engineering and design of functional and functionalizable nanomaterials and nanosystems. Such transparent and powerful concepts are based on isoelectronic (or isovalent) analogies, regularities and similarities, of which the periodical table of the elements is the best, simplest and most celebrated example. The periodical table constitutes a global regularity. Another much less known global regularity is illustrated in Figure 1 that shows the main part of an older version of the periodical table which includes only the main group elements without the d-block and the f-block elements. If we draw a diagonal in the table in Figure 1 we can see that all (or most) elements below the diagonal are metals and that the elements above the diagonal are non-metals [1]. An elementary explanation is that the elements on the left have only a few valence electrons which they can easily loose, whereas elements on the bottom have several inner shells of electrons which screen up and weaken the nuclear attraction to the valence electrons and which can, therefore, escape easily into the (free) electron sea.


Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities.

Zdetsis AD - Nanoscale Res Lett (2011)

The periodical table of the main group elements. The diagonal line roughly separates metals and non-metals.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211452&req=5

Figure 1: The periodical table of the main group elements. The diagonal line roughly separates metals and non-metals.
Mentions: There are several very powerful, general and fruitful concepts in physics and chemistry which are, at the same time, miraculously simple and highly efficient for the molecular engineering and design of functional and functionalizable nanomaterials and nanosystems. Such transparent and powerful concepts are based on isoelectronic (or isovalent) analogies, regularities and similarities, of which the periodical table of the elements is the best, simplest and most celebrated example. The periodical table constitutes a global regularity. Another much less known global regularity is illustrated in Figure 1 that shows the main part of an older version of the periodical table which includes only the main group elements without the d-block and the f-block elements. If we draw a diagonal in the table in Figure 1 we can see that all (or most) elements below the diagonal are metals and that the elements above the diagonal are non-metals [1]. An elementary explanation is that the elements on the left have only a few valence electrons which they can easily loose, whereas elements on the bottom have several inner shells of electrons which screen up and weaken the nuclear attraction to the valence electrons and which can, therefore, escape easily into the (free) electron sea.

Bottom Line: When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon.Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation.Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics University of Patras, GR 26500, Patra, Greece. zdetsis@upatras.gr.

ABSTRACT
A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent) principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

No MeSH data available.


Related in: MedlinePlus