Limits...
Conjugate heat transfer of laminar mixed convection of a nanofluid through an inclined tube with circumferentially non-uniform heating.

Allahyari S, Behzadmehr A, Sarvari SM - Nanoscale Res Lett (2011)

Bottom Line: Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically.The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector).Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.

View Article: PubMed Central - HTML - PubMed

Affiliation: Mechanical Engineering Department, University of Sistan and Baluchestan, P,O, Box 98164-161, Zahedan, Iran. amin.behzadmehr@eng.usb.ac.ir.

ABSTRACT
Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.

No MeSH data available.


Related in: MedlinePlus

Comparison of dimensionless velocity and temperature profiles in a horizontal tube with the corresponding numerical results [30].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211450&req=5

Figure 4: Comparison of dimensionless velocity and temperature profiles in a horizontal tube with the corresponding numerical results [30].

Mentions: A comparison has also been performed with the numerical results obtained by Ouzzane and Galanis [31]. As shown in Figure 4, axial evolution of the dimensionless temperatures and velocity is in good concordance with the present results.


Conjugate heat transfer of laminar mixed convection of a nanofluid through an inclined tube with circumferentially non-uniform heating.

Allahyari S, Behzadmehr A, Sarvari SM - Nanoscale Res Lett (2011)

Comparison of dimensionless velocity and temperature profiles in a horizontal tube with the corresponding numerical results [30].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211450&req=5

Figure 4: Comparison of dimensionless velocity and temperature profiles in a horizontal tube with the corresponding numerical results [30].
Mentions: A comparison has also been performed with the numerical results obtained by Ouzzane and Galanis [31]. As shown in Figure 4, axial evolution of the dimensionless temperatures and velocity is in good concordance with the present results.

Bottom Line: Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically.The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector).Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.

View Article: PubMed Central - HTML - PubMed

Affiliation: Mechanical Engineering Department, University of Sistan and Baluchestan, P,O, Box 98164-161, Zahedan, Iran. amin.behzadmehr@eng.usb.ac.ir.

ABSTRACT
Laminar mixed convection of a nanofluid consisting of water and Al2O3 in an inclined tube with heating at the top half surface of a copper tube has been studied numerically. The bottom half of the tube wall is assumed to be adiabatic (presenting a tube of a solar collector). Heat conduction mechanism through the tube wall is considered. Three-dimensional governing equations with using two-phase mixture model have been solved to investigate hydrodynamic and thermal behaviours of the nanofluid over wide range of nanoparticle volume fractions. For a given nanoparticle mean diameter the effects of nanoparticle volume fractions on the hydrodynamics and thermal parameters are presented and discussed at different Richardson numbers and different tube inclinations. Significant augmentation on the heat transfer coefficient as well as on the wall shear stress is seen.

No MeSH data available.


Related in: MedlinePlus