Limits...
Photoluminescence of spray pyrolysis deposited ZnO nanorods.

Kärber E, Raadik T, Dedova T, Krustok J, Mere A, Mikli V, Krunks M - Nanoscale Res Lett (2011)

Bottom Line: A dominant near band edge (NBE) emission is observed at 300 K and at 10 K.High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions.It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. malle@staff.ttu.ee.

ABSTRACT
Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

No MeSH data available.


Related in: MedlinePlus

Photoluminescence spectra at 10 K of the spray pyrolysis-deposited ZnO nanorod layers. The layers were deposited from aqueous solution onto SGL or ITO/SGL substrates, illustrated by spectrum A and B, respectively. The growth temperature (550°C) and spray rate (6.2 ml/min) were kept similar. The inset shows the photoluminescence spectrum at 300 K in region of 2.0-3.4 eV, characteristic of ZnO nanorods deposited onto ITO/SGL substrate at temperature of 550°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211449&req=5

Figure 4: Photoluminescence spectra at 10 K of the spray pyrolysis-deposited ZnO nanorod layers. The layers were deposited from aqueous solution onto SGL or ITO/SGL substrates, illustrated by spectrum A and B, respectively. The growth temperature (550°C) and spray rate (6.2 ml/min) were kept similar. The inset shows the photoluminescence spectrum at 300 K in region of 2.0-3.4 eV, characteristic of ZnO nanorods deposited onto ITO/SGL substrate at temperature of 550°C.

Mentions: The PL spectra of the best ZnONRL samples show a dominant near band edge (NBE) emission at T = 10 K and at T = 300 K, see Figure 4 (further discussion in Effect of the substrate on PL properties of ZnONRL, Effect of the growth temperature on PL properties of ZnONRL, Effect of the spray rate on PL properties of ZnONRL, and Effect of solvent type on PL properties of ZnONRL sections). The NBE peak positions were determined by fitting the spectra with the Lorentz distribution using the Fityk curve-fitting freeware. The NBE peak measured at T = 300 K is due to free exciton transition. High-resolution PL measurements at T = 10 K reveal four transitions due to bound excitons: a prevailing exciton peak at 3.358-3.360 eV, two other exciton peaks at 3.363 eV and 3.368-3.370 eV, a peak of the two electron transition at 3.334-3.335 eV and the free exciton peak at 3.378 eV [26,29-32]. The exciton peak at ca. 3.360 eV, which is attributed to a donor-related transition by many authors [26,29-32], is present as the dominant transition, irrespective of the deposition conditions.


Photoluminescence of spray pyrolysis deposited ZnO nanorods.

Kärber E, Raadik T, Dedova T, Krustok J, Mere A, Mikli V, Krunks M - Nanoscale Res Lett (2011)

Photoluminescence spectra at 10 K of the spray pyrolysis-deposited ZnO nanorod layers. The layers were deposited from aqueous solution onto SGL or ITO/SGL substrates, illustrated by spectrum A and B, respectively. The growth temperature (550°C) and spray rate (6.2 ml/min) were kept similar. The inset shows the photoluminescence spectrum at 300 K in region of 2.0-3.4 eV, characteristic of ZnO nanorods deposited onto ITO/SGL substrate at temperature of 550°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211449&req=5

Figure 4: Photoluminescence spectra at 10 K of the spray pyrolysis-deposited ZnO nanorod layers. The layers were deposited from aqueous solution onto SGL or ITO/SGL substrates, illustrated by spectrum A and B, respectively. The growth temperature (550°C) and spray rate (6.2 ml/min) were kept similar. The inset shows the photoluminescence spectrum at 300 K in region of 2.0-3.4 eV, characteristic of ZnO nanorods deposited onto ITO/SGL substrate at temperature of 550°C.
Mentions: The PL spectra of the best ZnONRL samples show a dominant near band edge (NBE) emission at T = 10 K and at T = 300 K, see Figure 4 (further discussion in Effect of the substrate on PL properties of ZnONRL, Effect of the growth temperature on PL properties of ZnONRL, Effect of the spray rate on PL properties of ZnONRL, and Effect of solvent type on PL properties of ZnONRL sections). The NBE peak positions were determined by fitting the spectra with the Lorentz distribution using the Fityk curve-fitting freeware. The NBE peak measured at T = 300 K is due to free exciton transition. High-resolution PL measurements at T = 10 K reveal four transitions due to bound excitons: a prevailing exciton peak at 3.358-3.360 eV, two other exciton peaks at 3.363 eV and 3.368-3.370 eV, a peak of the two electron transition at 3.334-3.335 eV and the free exciton peak at 3.378 eV [26,29-32]. The exciton peak at ca. 3.360 eV, which is attributed to a donor-related transition by many authors [26,29-32], is present as the dominant transition, irrespective of the deposition conditions.

Bottom Line: A dominant near band edge (NBE) emission is observed at 300 K and at 10 K.High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions.It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. malle@staff.ttu.ee.

ABSTRACT
Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

No MeSH data available.


Related in: MedlinePlus