Limits...
Photoluminescence of spray pyrolysis deposited ZnO nanorods.

Kärber E, Raadik T, Dedova T, Krustok J, Mere A, Mikli V, Krunks M - Nanoscale Res Lett (2011)

Bottom Line: A dominant near band edge (NBE) emission is observed at 300 K and at 10 K.High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions.It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. malle@staff.ttu.ee.

ABSTRACT
Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

No MeSH data available.


Related in: MedlinePlus

SEM images of ZnO nanorod layers deposited by chemical spray pyrolysis. The layers (a, b, c) were deposited onto ITO/SGL substrate at growth temperature of 550°C (a) or 480°C (b, c) using aqueous (a, b) or alcoholic solutions (c) at similar spray rate (2.2 ml/min).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211449&req=5

Figure 3: SEM images of ZnO nanorod layers deposited by chemical spray pyrolysis. The layers (a, b, c) were deposited onto ITO/SGL substrate at growth temperature of 550°C (a) or 480°C (b, c) using aqueous (a, b) or alcoholic solutions (c) at similar spray rate (2.2 ml/min).

Mentions: SEM surface images of ZnONRL grown onto ITO/SGL substrate are presented as Figure 3. The ZnONRL deposited from aqueous solution of ZnCl2 (0.1 mol/L) at TG = 550°C is composed of separately standing ZnO crystals with a diameter of 100-300 nm and length of ca. 800 nm, see Figure 3a. When grown at a lower temperature of TG = 480°C using aqueous solutions, the rod-like shape of the crystals is not well-developed (Figure 3b) as also shown in our earlier study [22]. However, the deposition of an alcoholic solution at TG = 480°C results in well-developed hexagonal rods with a diameter of ca. 100-200 nm and length of ca. 700-800 nm (see Figure 3c). This result indicates that the spray of an alcoholic solution allows to obtain ZnONRL composed of rods with high aspect ratio at lower substrate temperature compared to the spray of aqueous solution.


Photoluminescence of spray pyrolysis deposited ZnO nanorods.

Kärber E, Raadik T, Dedova T, Krustok J, Mere A, Mikli V, Krunks M - Nanoscale Res Lett (2011)

SEM images of ZnO nanorod layers deposited by chemical spray pyrolysis. The layers (a, b, c) were deposited onto ITO/SGL substrate at growth temperature of 550°C (a) or 480°C (b, c) using aqueous (a, b) or alcoholic solutions (c) at similar spray rate (2.2 ml/min).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211449&req=5

Figure 3: SEM images of ZnO nanorod layers deposited by chemical spray pyrolysis. The layers (a, b, c) were deposited onto ITO/SGL substrate at growth temperature of 550°C (a) or 480°C (b, c) using aqueous (a, b) or alcoholic solutions (c) at similar spray rate (2.2 ml/min).
Mentions: SEM surface images of ZnONRL grown onto ITO/SGL substrate are presented as Figure 3. The ZnONRL deposited from aqueous solution of ZnCl2 (0.1 mol/L) at TG = 550°C is composed of separately standing ZnO crystals with a diameter of 100-300 nm and length of ca. 800 nm, see Figure 3a. When grown at a lower temperature of TG = 480°C using aqueous solutions, the rod-like shape of the crystals is not well-developed (Figure 3b) as also shown in our earlier study [22]. However, the deposition of an alcoholic solution at TG = 480°C results in well-developed hexagonal rods with a diameter of ca. 100-200 nm and length of ca. 700-800 nm (see Figure 3c). This result indicates that the spray of an alcoholic solution allows to obtain ZnONRL composed of rods with high aspect ratio at lower substrate temperature compared to the spray of aqueous solution.

Bottom Line: A dominant near band edge (NBE) emission is observed at 300 K and at 10 K.High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions.It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. malle@staff.ttu.ee.

ABSTRACT
Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

No MeSH data available.


Related in: MedlinePlus